CD147 and its interacting proteins in cellular functions

JIANG Jian-Li*, TANG Juan
Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, the Fourth Military Medical University, Xi’an 710032, China

Abstract: CD147 (basigin, EMMPRIN, neurothelin, M6, HAb18G, etc.), a transmembrane glycoprotein, has a broad expression pattern on various epithelial cells with some differences between species, e.g. rat, mouse, chicken and human, but is highly enriched on the surface of cancer cells of epithelial origin such as lung cancer, breast cancer and hepatoma cells. The CD147 antigen consists of two IgSF domains, a transmembrane sequence containing a charged residue (Glu) and a cytoplasmic domain of 40 residues. The particular structural features suggest that it is involved in protein-protein interactions. Although the interacting molecules are still not well known due to unavailability of the 3D structure of CD147, adhesion, coimmunoprecipitation and other studies recently suggest that several proteins, including integrins, cyclophilins, MCT, etc., interact with CD147 as its ligand or receptor candidates to mediate a wide range of cellular functions.

Key words: CD147; EMMPRIN; HAb18G; integrin; monocarboxylic acid transporter; cyclophilin; caveolin-1; βig-h3

1 Introduction

Homeostasis in organized tissue structures is achieved by a dynamic interplay between the extracellular stroma and the epithelia involving many cellular adhesion molecules (CAMs). Disturbances in this relationship may be involved in the pathogenesis of a variety of epithelial-derived malignancies. CD147 is a widely expressed membrane protein that has been implicated in a variety of physiological and pathological processes. It is a highly glycosylated transmembrane protein with an ectodomain consisting of two regions exhibiting the characteristics of the immunoglobulin (Ig) superfamily which is the largest family of CAMs[1-4]. A well-known protein extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN) forms the CD147 family along with a variety of other proteins, such as OX-47[2] and CE9[5].
basigin forms homo-oligomers in a cis-dependent manner on the plasma membrane, and the molecules associate with each other probably via hydrophobic interactions between their N-terminal Ig-like domains. The N-terminal Ig domain of basigin is necessary and sufficient for basigin homo-oligomer formation[16]. Sun et al. used CD147 transfectants and immobilized recombinant CD147-Fc fusion protein to show that CD147/EMMPRIN engages in a homophilic interaction, predominantly through the first Ig domain. They also suggested that homophilic CD147-binding may occur in the context of both heterotypic and homotypic cell-cell interactions and may play a key role in MMP-2 production and tumor cell invasion[14].

Nevertheless, monomer form of CD147 with strong intensity does exist in some tissues. These monomers may be involved in other supramolecular structures via heterophilic association with other molecules[16] as discussed below.

3 Association of monocarboxylic acid transporters (MCTs) with CD147

Monocarboxylic acids play an important role in the metabolism of all cells. Some tissues, such as skeletal muscle, red blood cells and many cancer cells, rely on this pathway to produce most of their ATP. Metabolism of glucose via glycolysis results in the production of large quantities of lactate that must be transported out of the cell if high rates of glycolysis are to be maintained. MCTs catalyze proton-coupled transport of monocarboxylic acid, among which lactate is especially important.

Chemical cross-linking, coexpression, coimmunoprecipitation and colocalization studies have identified MCT1, MCT3 and MCT4 to be specifically associated with CD147 in the plasma membrane[17–19]. The association facilitates the expressions of both MCTs and CD147[18–20]. siRNA-mediated silencing of MCT4 impaired the maturation and trafficking of CD147 to the cell surface, resulting in an accumulation of CD147 in the endoplasmic reticulum. Knockdown of CD147 resulted in loss of MCT4 in the plasma membrane and accumulation of the transporter in the endolysosomes[20]. Similar results were also obtained in CD147-null mice, which showed the normal levels of transcribed MCT1, MCT3 and MCT4 mRNA, but severely reduced protein level[21,22]. By using the fluorescence resonance energy transfer (FRET), Wilson et al. revealed that a dimer of CD147 binds to two molecules of MCT1[22]. Studies using CD147 chimeras indicated that the cytoplasmic tail and/or transmembrane regions of CD147 may be
particularly important for association with MCT1\(^{[23]}\). All the data imply that CD147 acts as a chaperone for MCT1 and MCT4 translocation to the plasma membrane.

4 CD147 and cyclophilins

CD147-cyclophilin interactions have been well reviewed recently by Yurchenko et al\(^{[24]}\). Cyclophilin A (CyPA) is a ubiquitously expressed intracellular protein and is best known as the principal ligand for the potent immunosuppressive drug, cyclosporin (CsA)\(^{[25-27]}\). CyPA also possesses peptidylprolyl cis-trans isomerase activity and is thought to assist protein folding as a chaperon\(^{[28]}\). Recent experiments revealed that CD147 interacts with cyclophilins as a signaling receptor and mediates the signaling and chemotactic activities of extracellular CyPA\(^{[29]}\) and CyPB\(^{[30]}\).

We recently obtained consistent results in identifying the function of CD147 in the invasion of host cells by severe acute respiratory syndrome (SARS) coronavirus (CoV)\(^{[31]}\). The protein-protein interactions among CD147, CyPA, and SARS-CoV structural proteins were analyzed by coimmunoprecipitation and surface plasmon resonance analysis. The results confirmed the interaction between CD147 and CyPA which were coimmunoprecipitated and localized on the plasma membrane and intracellular unit membranes. Although none of the SARS-CoV proteins was found to be directly bound to CD147, the nucleocapsid (N) protein of SARS-CoV was bound to CyPA, which interacts with CD147. Mediated by CyPA bound to SARS-CoV N protein, CD147 plays a functional role in facilitating invasion of host cells by SARS-CoV.

Although studies have shown that CypA binds to CD147 and transmits a signal to downstream cascades, the precise mechanism is still not clear. Previous study has shown that CypA serves as a secreted growth factor induced by oxidative stress and promotes cell proliferation in the vascular smooth muscle cells (VSMCs) through the ERK1/2 pathway\(^{[32]}\). Current studies indeed provide evidences that CypA stimulates proliferation of human pancreatic cancer Panc-1 cells through CD147 by activating the ERK1/2\(^{[33]}\) and p38 pathways, and that CyPA can protect neurons from oxidative stress and in vitro ischemia via CD147 activation of ERK1/2 pathways\(^{[34]}\).

5 CD147 and integrins

Integrins are cell surface adhesive receptors composed of \(\alpha\)- and \(\beta\)-chain heterocomplexes, which mediate the physical and functional interactions between cell and its surrounding extracellular matrix. Integrins thus serve as bidirectional transducers of extracellular and intracellular signals in the processes of cells adhesion, proliferation, differentiation, apoptosis and tumor progression.

Considering the structural and functional features of CD147 and integrins, these two molecules may interact with each other perfectly. Indeed, after CD147 cDNA was introduced into L cell, cell-substratum adhesion activity was enhanced. This enhanced cell-substratum adhesion was inhibited by an arginine-glycine-aspartic acid (RGD) peptide, which competitively inhibits integrins, and also by anti-integrin antiserum demonstrating a role of CD147 in promoting the integrin-mediated cell-substratum adhesion\(^{[35]}\). The following experiment showed that CD147, as a carrier of Lewis X antigen, promotes cell adhesion to substratum which is also mediated by integrin.

The direct physical association of integrin with CD147 was demonstrated by coimmunoprecipitation, cell-surface cross-linking and immunofluorescence colocalization experiments\(^{[36]}\). The CD147 protein was found to be associated with integrin \(\alpha_3\beta_1\) and \(\alpha_6\beta_1\), but not \(\alpha_2\beta_1\) nor \(\alpha_5\beta_1\).

CD98 is another transmembrane protein, of which few of its antibodies have been shown to induce homotypic aggregation of U937 promonocyte cells. Both anti-integrin and anti-CD147 inhibit the inducing effect of anti-CD98\(^{[37]}\). CD98 can form a dimer with amino acid transporters which are similar to MCTs, thus suggesting a possible role for CD147-integrin-MCT interaction in regulating cell aggregation.

Activation of the signaling pathway of integrin plays a central role in the maintaining and reconstructing of cell architecture. In Drosophila melanogaster, CD147 promotes cytoskeletal rearrangements and the formation of lamellipodia\(^{[38]}\). CD147 and integrin colocalize in cultured insect cells and in the visual system. The effect of CD147 is integrin-dependent as shown by the inhibition with RGD peptides and mutation study. CD147-mediated changes in the internal cell architecture, both in vitro and in vivo, require integrin binding activity.

6 CD147 and caveolin-1

Caveolin-1 was first identified as a tyrosine-phosphorylated protein in Rous sarcoma transformed cells\(^{[39]}\) and is known primarily as an integral membrane protein, which functions in intracellular and extracellular lipid transport\(^{[40]}\). Caveolin-1 has also been reported to interact with a variety of signaling molecules including growth factor receptors,
G proteins, Src family kinases, etc40.

Recently, Tang \textit{et al.} revealed an important association between CD147 and caveolin-1 based on coimmunoprecipitation in different cell types43. The CD147-caveolin-1 complex appears on the cell surface involving the Ig domain 2 of CD147 as shown by extensive CD147 mutagenesis experiments. This association is quite distinct from CD147-integrin complexes which require Ig domain 1 instead of Ig domain 2. Interestingly, this interaction results in decreased CD147 cell surface clustering and CD147-dependent MMP induction. Knockdown of caveolin-1 levels by RNAi leads to a shift in CD147 toward its more active, more highly glycosylated and clustered form which triggers MMP production. These results give a partial explanation why caveolin-1 can suppress cell proliferation, tumor cell invasion, soft agar growth and MMP production42,43.

Further studies have demonstrated that caveolin-1 selectively associates with less glycosylated (LG)-CD147, and restricts the biosynthetic conversion of LG-CD147 to high glycosylated (HG)-CD147, thereby leading to diminished self-aggregation of CD147 on the cell surface and MMP induction44.

On the contrary, Barth \textit{et al.} reported inconsistent results45. In the bleomycin-induced lung injury system, both CD147 and MMPs (MMP-2 and -9) expressions were upregulated in conjunction with downregulation of caveolin-1 in the lung epithelial cell line and in retrospective samples of bleomycin-induced fibrosis and caveolin-1 knockout mice. Colocalization experiments, however, excluded any direct interaction between caveolin-1 and CD147 in the normal and bleomycin-treated cells. The real features of CD147-caveolin-1 interrelationship therefore remain unclear, and further investigations are required.

7 \textbf{Big-h3, a new molecule candidate associated with CD147}

The network of CD147-interacting molecules is not fully understood yet. With the extensive and effective research being carried out, new candidate molecules are likely to come forth. We have recently demonstrated that expression levels of \textit{big-h3} (also known as TGFBI, betaig-h3, BIGH3), a secretary extracellular matrix protein, is positively correlated to the expression of CD147 by cDNA microarray, quantitative real-time PCR, Western blot and siRNA assay46. \textit{Big-h3} was first identified from A549 lung adenocarcinoma cell line after long-term treatment by TGF-\textit{B}147. \textit{Big-h3}, is involved in cell growth, migration, apoptosis, wound healing and tumorigenesis48-53, and might function as either a promoter or inhibitor of carcinogenesis depending on cells and tumor types.

Results obtained from cell adhesion, invasion and gelatin zymography assay indicated that \textit{big-h3} enhances hepaticoma cell invasion and metastasis potential46. \textit{Big-h3}, containing an RGD (Arg-Gly-Asp) motif, may interact with integrins51,54,55. CD147 is known to form complexes with integrins (see above “CD147 and integrins” section). Reffering to our recent results that \textit{big-h3} was coimmunoprecipitated with CD147 and integrin \(\alpha3\beta1\) (authors’ unpublished data), these findings shed new insight into the possibility of integrin (especially for \(\alpha3\beta1\)) acting as a bridge between CD147 and \textit{big-h3} to form a trimer, and thereof regulating CD147-induced invasion and metastasis of tumor cells. The detailed investigation is currently under way in our laboratory.

8 \textbf{Conclusions}

As a widely expressed transmembrane glycosylated adhesion molecule in the epithelial cells, the structural features of CD147 imply that it may interact with a variety of other proteins to play important roles in cell proliferation, energy metabolism, migration, adhesion and motion, especially in cancer metastasis. CD147 may induce several malignant properties associated with cancer, including migration, invasiveness and angiogenesis. It is of great significance to further explore the interacting molecules or ligands of CD147, not only for elucidating its action mechanism but also as targets for development of diagnosis and treatment methods for CD147-associated diseases. Indeed, Licartin (\(1^{131}\)I mAb specific for HAb18G/CD147) was developed in our laboratory and has been applied safely and effectively in treating hepatocellular carcinoma patients10,56,57.

\textbf{REFERENCES}

3. Seulberger H, Lottspeich F, Risau W. The inducible blood-

8 Faddoul JM, Linser PJ. 5A11 antigen is a cell recognition molecule which is involved in neuronal-glial interactions in avian neural retina. Dev Dyn 1993; 196(4): 252-262.

28 Wilson MC, Meredith D, Halestrap AP. Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J Biol Chem 2002; 277(5): 3666-3672.

34 Wilson MC, Meredith D, Halestrap AP. Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J Biol Chem 2002; 277(5): 3666-3672.

40 Wilson MC, Meredith D, Halestrap AP. Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J Biol Chem 2002; 277(5): 3666-3672.

* * *

JIANG Jian-Li, Ph.D.

Dr. JIANG Jian-Li was graduated from the Fourth Military Medical University in 1994, and received his Master Degree on Pathology in 1997 and Doctorate in Cell Biology at the same University in 2004. He joined the Department of Cell Biology and Cell Engineering Research Center in the Fourth Military Medical University in 1997, where he worked as a Research Assistant, Lecturer and is currently an Associate Professor in Cell Biology. From December 1999 to December 2001, he was a Visiting Scholar and Research Assistant at the Epithelial Cell Biology Research Center, Faculty of Medicine of the Chinese University of Hong Kong. Dr. JIANG is engaged in research on Tumor Cell Biology and Molecular Pathology, especially on the molecular mechanisms and biomarkers of invasion and metastasis of hepatocellular carcinoma. His interests are now focused on understanding the role of a new adhesion molecule, CD147, which is involved in various cell functions and pathological processes including cancer growth and metastasis. He has published 38 papers, 17 pieces of which were indexed by SCI. He has received the 2nd Rank Award of Scientific & Technological Achievement of China (2005) for his work. Dr. JIANG is a committee member of Cell Biological Academic Association of Shaanxi Province, and Chinese Society of Tumor Marker Oncology.