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Abstract: Traumatic injury or inflammatory irritation of the peripheral nervous system often leads to persistent pathophysiological
pain states.  It has been well-documented that, after peripheral nerve injury or inflammation, functional and anatomical alterations
sweep over the entire peripheral nervous system including the peripheral nerve endings, the injured or inflamed afferent fibers, the
dorsal root ganglion (DRG), and the central afferent terminals in the spinal cord.  Among all the changes, ectopic discharge or
spontaneous activity of primary sensory neurons is of great clinical interest, as such discharges doubtless contribute to the develop-
ment of pathological pain states such as neuropathic pain. Two key sources of abnormal spontaneous activity have been identified
following peripheral nerve injury: the injured afferent fibers (neuroma) leading to the DRG, and the DRG somata.  The purpose of this
review is to provide a global account of the abnormal spontaneous activity in various animal models of pain. Particular attention is
focused on the consequence of peripheral nerve injury and localized inflammation. Further, mechanisms involved in the generation of
spontaneous activity are also reviewed; evidence of spontaneous activity in contributing to abnormal sympathetic sprouting in the
axotomized DRG and to the initiation of neuropathic pain based on new findings from our research group are discussed.  An improved
understanding of the causes of spontaneous activity and the origins of neuropathic pain should facilitate the development of novel
strategies for effective treatment of pathological pain.
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1  Spontaneous activity in animal models of patho-
logical pain

Pain resulting from either inflammation or direct physical
damage (transection or compression) to peripheral nerve
fibers is accompanied by a pathologically increased excit-
ability of primary sensory neurons [e.g., dorsal root gan-
glion (DRG) neurons].  This abnormal excitability mani-
fests in decreased spike generation threshold[1-3], exagger-
ated after-discharge activity[3-6] and spontaneous spike gen-
eration by primary sensory neurons (Table 1).

Spontaneous activity originating from the DRG is rarely
observed in the absence of injury[8] but is often seen after
peripheral axotomy[3,11, 14-20] or inflammation[13] and, therefore,
may contribute to chronic pathologic pain. When spontane-
ous activity is present, impulse generation usually does not
arise in the receptor endings but rather in the DRG[2,11,17,21]

and the injury site of peripheral nerve (neuroma). Neuroma
as a prolonged source of spontaneous activity was first re-
ported by Wall, Gutnick, Waxman, and Basbaum in separate
studies[8,22,23], and was later confirmed by many other inves-

Table 1. Incidence of spontaneous activity in normal and pathologi-
cal sensory afferents

C-fibers Aβ-fibers
Animal model Normal Pathologic Normal Pathologic

CSNT[7] - - 1% 20%
CSNT[8] 4.5% 4.5% 5% 9%-14%
CSNT[9] 0% 0% 1.3% 8.6%
CSNT[10] 0% 3.4% 1% 22%
CCI[2] 0% 21% 0%-10% 9%-33%
SSI or SNL[1] - - 5% 10%-15%
CCD[11] - - 1% 8.6%
CCD[12] - - 2% 22%
CCD[3] 0% 8% 2.6% 4%-17%
LID[13] 0 11% 1.5% 13.2%

CSNT: complete sciatic nerve transection; CCI: chronic constric-
tive injury; SNL: spinal nerve ligation; CCD: chronic compression
of the DRG; LID: localized inflammation of the DRG.

tigators[4,5,10].  Another site of spontaneous activity is at areas
of demyelination along the peripheral nerve fibers[4,6].
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Importantly, not only injured neurons but also adjacent in-
tact neurons in neuropathic rats may become spontaneously
active and hyper-excitable[10,24,25].  In part, axonal or neu-
ronal cross-excitation may be responsible for this hyperex-
citability[26,27]. Recent studies demonstrate that spontaneous
activity not only develops in DRGs after peripheral injury
and inflammation, but also occurs in DRG following direct
mechanical compression[3,11] or even inflammatory irrita-
tion without any traumatic injury[13].  Ectopic spontaneous
discharges generated within the chronically compressed
ganglia were recorded from neurons with intact,
conducting, myelinated or unmyelinated peripheral nerve
fibers. The incidence of spontaneously active myelinated
fibers was 8.61% for CCD rats versus 0.96% for previ-
ously nonsurgical rats[11].

Recently, it was discovered that localized unilateral in-
flammatory irritation of an L5 DRG by depositing a drop
of immune activator, zymosan, on top of the ganglion pro-
duced behavioral evidence of chronic bilateral cutaneous
hyperalgesia and allodynia[13].  Extracellular electrophysi-
ological recordings from teased dorsal root fibers from the
chronically inflamed DRG (LID), revealed the presence of
abnormal ectopic discharges in subpopulations of neurons
with myelinated or unmyelinated axons. The discharge
originated within the DRG and persisted over 21 days after
a single zymosan application. The patterns of ectopic dis-
charge were similar to those recorded from primary sen-
sory neurons with transected peripheral axons (e.g.[14,16,17,23,28])
and to those recorded from compressed DRG neurons[11]

except that higher percentage (e.g. 32%) of the inflamed,
spontaneously active DRG neurons had a bursting pattern
(Fig. 1).  The presence of ectopic discharges originating
from the inflamed ganglion suggests that the DRG somata
have become hyper-excitable despite having intact, func-
tioning axonal processes and having no physical injury.

2  Ionic and cellular mechanisms of spontaneous
activity

The increased excitability of sensory neurons that occurs
in various chronic pain models seems to reflect changes in
a number of different ion channels, according to electrophy-
siological, immunohistochemical, and gene expression
studies[29-38].

Altered expression of ion channels such as upregulation
of sodium channels and downregulation of potassium chan-
nels contributes, at least partially, to the enhancement of
neuronal excitability and to the generation of spontaneous
activity[39-41]. Both tetrodotoxin (TTX)-sensitive and

-resistant sodium currents are sensitive to a variety of local
anesthetics[42-48]. In neuropathic animal models, administer-
ing lidocaine or TTX systemically suppressed the ectopic
discharges recorded extracellularly in the neuroma, DRG,
or spinal horn neurons in a dose-dependent manner[49-54].
Systemic lidocaine treatment also prevented thermal hyper-
algesia and cutaneous thermal abnormalities in rats after
peripheral nerve inflamation (PNI)[55], whereas local infu-
sion of lidocaine into the compressed DRG reduced devel-
opment of tactile allodynia[56].

Excitability of neurons is determined mostly by resting
membrane potential (Vm) and action potential (AP) thresh-
old level. Neuronal ability to repeatedly fire and parameters
of this repetitive firing (spontaneous or bursting) depend on
the rate of AP decay and events following a single spike or
series of spikes such as afterhyperpolarization or post-teta-
nic hyperpolarization.  Recent discoveries have shown that
spontaneous fluctuations of Vm may trigger spontaneous AP
in DRG neurons[2,3,41,57]. Neuropathy does not appear to af-
fect resting Vm of primary afferent neurons in most neuro-
pathic animal models[2,3,41,57]. However, neuropathy increases
the incidence of subthreshold membrane oscillations of rest-
ing Vm

[1,9,58] and decreases AP threshold[1-3]. As proposed
by Amir et al.[58], subthreshold Vm oscillations are likely
caused by reciprocal activity of a phasically activating voltage-
dependent, tetrodotoxin-sensitive Na+ conductance and a
passive, voltage-independent K+ leak. Under normal condi-
tions and during neuropathy, neurons that are capable of
spontaneous activity or repetitive firing during slight depo-
larization have a shorter afterhyperpolarization[1,59].

The hyperpolarization-activated cyclic nucleotide gated
current (IH) plays a key role in the regulation of neuronal
excitability, and increases in this current can confer the
types of changes seen in sensory neuron properties in the

Fig. 1. Inflamed Aβ neurons exhibited spontaneous activity with
bursting patterns. Three typical bursting patterns recorded extracel-
lularly from dorsal root fibers of inflamed ganglia on postoperative
day 7. Reproduced from Xie et al., Neuroscience, 2006[13].
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LID, CCD, and other chronic pain models - spontaneous
activity, repetitive firing in response to depolarizing stimuli,
and membrane oscillations[60-63].

Electrophysiological studies of adult rat DRG neurons
indicate that IH is found in virtually all large neurons, many
medium sized neurons, and a small subset of small neu-
rons[59,62,64-66] (for example, see Fig. 2).  Hence this current
is present in the subset of cells most commonly found to
demonstrate bursting or high frequency spontaneous ac-
tivity in various pain models.  IH current density has been

shown to increase in the CCD model[67].  Ectopic activity
in the spinal nerve ligation model is also sensitive to blockers
of IH

[68,69], suggesting that this current plays a role in sev-
eral different pain models. The importance of changes in
IH for pain behaviors is suggested by in vivo studies show-
ing that systemic injection of IH blockers markedly reduces
pain behaviors.  This has been found for the spinal nerve
ligation model[68,70]; these authors also showed that effec-
tive plasma concentrations of the IH blocker used were
low enough to be specific for IH, and that the site of action
was not the spinal cord and was likely to be in the DRG.

3  Spontaneous activity-mediated sympathetic
sprouting

In humans, traumatic injury to soft-tissue, bone, and/or nerve
often leads to a chronic pain state, known as complex re-
gional pain syndrome (CRPS, previously described as reflex
sympathetic dystrophy and causalgia) that is characterized
by ongoing pain with associated allodynia and hyperalgesia[71].
Intriguingly, in some patients the pain and hyperalgesia are
maintained by efferent noradrenergic sympathetic activity
and circulating catecholamines (sympathetically maintained
pain, SMP)[72], and may be partly responsive to sympa-
thetic blockade, while in others the pain is sympathetically
independent (SIP)[73]. Patients with SMP or SIP often
present with similar signs and symptoms[71,74]. Clinically,
SMP is the component of many various painful conditions
such as CRPS, phantom pain, neuralgias, and herpes zoster.
The lack of understanding of the neurophysiological mecha-
nisms by which the sympathetic system invades the pe-
ripheral sensory system has hindered progress in the treat-
ment of these painful conditions.

Recent studies indicate that spontaneous activity of the
primary sensory neurons may play a critical role in the
development of SMP.  The main discharge patterns for
spontaneously active large DRG neurons[8,14,15,28] include
bursting discharge, regular high-frequency (tonic) (up to
100 Hz) and irregular low-frequency discharge (less than
15 Hz), whereas most small neurons fire with an irregular,
low frequency discharge pattern[19,28]. Both incidence and
discharge rate of spontaneous activity are much higher in
myelinated large and medium DRG neurons than unmyeli-
nated small DRG neurons as demonstrated in virtually all
neuropathic animal models (Table 1).

These large and medium-sized DRG neurons are also
much more likely to be sites of sympathetic sprouting.
Moreover, since the number of spontaneously active DRG
neurons (e.g., 17% of 8 000-10 000 neurons)[8,28,75] in a

Fig. 2. Recording of IH from intact DRG using discontinuous single
electrode voltage clamp (dSEVC). A: Example of IH current elicited
by a step from -60 to -120 mV with single electrode voltage clamp.
IH is measured as the slowly developing inward current. IH, but not
the instantaneous current, was blocked by 10 μmol/L ZD7288 (bottom
trace; B, C).
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Fig. 4. Effects of local nerve block on complete sciatic nerve transcetion (CSNT)-induced sympathetic sprouting. A:  Color inverted image
showing TH-immunoreactive fibers sprouting from perivascular plexuses in a DRG section of CSNT rats on POD 14. B: Image is generated
after tracing all the TH-immunoreactive fibers in A. C:  Microscopic photographs of basket-like structures (arrows). D: Nerve block
decreased sympathetic fiber density measured on POD 14. Scale bar, 50 μm. **P<0.01, Student’s t-test.  Reproduced from Zhang et al., Pain,
2004[78].

Fig. 3. Schematic drawing of the sciatic nerve blockade using im-
planted osmotic minipump filled with TTX or lidocaine.

single ganglion is much greater than that of basket cells
(neurons surrounded by a ring of sympathetic fibers)[76],
the reasonable assumption is that only DRG cells with a
certain discharge pattern (e.g., bursting discharge) or with
a greater discharge rate (e.g., >15 Hz)[14] may trigger sym-
pathetic sprouting. This is supported by the findings that
higher percentage of spontaneously active neurons in the
axotomized DRG are co-localized with sympathetic fibers[77]

and that nerve injury-induced sympathetic sprouting is de-
creased by local or systemic administration of lidocaine[77-79]

(Fig. 3, 4).  It was found that systemic lidocaine beginning
at the time of surgery via repeated i.p. injections or an
implanted osmotic pump remarkably reduced sympathetic
sprouting (e.g., the density of sympathetic fiber and the
number of DRG neurons surrounded by sympathetic fibers)
in nerve-injured DRGs. The effects of systemic lidocaine
lasted more than 7 d after the termination of lidocaine
administration.  Similar results were obtained after topical
application of lidocaine or TTX to the nerve trunk to block
abnormal discharges originating in the neuroma.  Results
strongly suggest that sympathetic sprouting in pathologic
DRG is associated with abnormal spontaneous activity
originating in the DRG or the injured axons (e.g., neuroma).
It is not clear why nerve blockade reduced sympathetic

sprouting in the axotomized DRG, however, recent stud-
ies from our laboratory revealed that nerve blockade be-
ginning at the time of nerve injury prevented DRG cells
from generating spontaneous activity at later time[77]. This
finding provides new insight into the mechanisms underly-
ing sympathetic sprouting and increases our current un-
derstanding of the prolonged therapeutic effects of lidocaine
on neuropathic pain syndromes.

The facts that sympathetic sprouting has been observed
in intact ganglia ipsilateral or contralateral to the injury in
rats with peripheral nerve injury[80], and has been found in
compressed DRGs[81] without axotomy suggest that nerve
injury may not be the only factor that triggers or mediates
sympathetic sprouting. This is confirmed by recent find-
ings that localized inflammatory irritation of the DRG in-
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duces sympathetic sprouting[13] and systemic administra-
tion of steroid decreases the density of sympathetic fibers
and the number of basket structures[82]. It suggests that
inflammatory responses in the axotomized DRG may be
another attributing factor in the abnormal sympathetic
sprouting.

4  Activity-dependent expression and/or release
of neurotrophins

Both NGF and its homologue (NT-3) are neurotrophic fac-
tors that are essential for development of sympathetic neu-
rons[83-86]. After nerve transection, NGF protein levels and
NGF-immunoreactivity (IR) in the DRG are dramatically
increased as early as 2 d after surgery[87] which is parallel
to the occurrence of sympathetic sprouting in the same
animal model. A recent study using in situ hybridization
and immunohistochemical techniques found that NGF and
NT-3 synthesis was up-regulated in glial cells surrounding
neurons in axotomized DRG after nerve injury[88]. Sympa-
thetic sprouting around the axotomized neurons was asso-
ciated with IR for the p75 NGF receptor in glial cells. In
another study, using a line of transgenic mice overexpressing
NGF in glial cells, trigeminal ganglia from adult transgenic
mice possessed significantly higher levels of NGF protein
in comparison to age-matched, wild-type mice[89]. The sym-
pathetic axons extended into the trigeminal ganglia of
transgenic but not wild-type mice and formed perineuronal
plexuses surrounding only those neurons immunostained
for NGF. In addition, such plexuses were accompanied
by glial processes from nonmyelinating Schwann cells[89].
These results implicate glial-cell-derived neurotrophins in
the induction of sympathetic sprouting following nerve
injury.

A wealth of evidence has been accumulated during the
last few decades demonstrating that the production and/or
release of the growth factors are normally controlled by
axonal and/or neuronal electrical activity[90-101]. Some re-
cent evidence from electrical activity recordings of single
glial cells and neurons suggest that neuronal activity is more
intricately linked with that of glial cells than previously
thought[102-104]. For example, depolarization and hyperpo-
larization of glial membranes has been measured in response
to similar electrical activity in adjacent neurons[105]. Conversely,
glial cells may affect neuronal activity through a similar
mechanism[106,107]. These glial membrane responses may
be accompanied by changes in the concentration of ions
within the glial cells. Some glial cells respond to the presence
of glutamate or electrical stimulation with slow alternating flows

of calcium ions into and out of the cells. These so-called
calcium waves are passed to adjacent glial cells[108,109]. This
phenomenon appears to be yet another method whereby
glial cells communicate with surrounding neurons.  Recently,
it has been shown that glial cells are activated by fractalkine,
which is tethered to the neuronal membrane by a mucin
stalk.  When the neuron is sufficiently activated, the stalk
breaks, releasing fractalkine into the extracellular fluid[110-113].
Based on the above evidence, spontaneous activity of the
DRG neurons may regulate the synthesis/release of
neurotrophins from neighboring glial cells by electrical
signaling.

5  Early spontaneous activity is the trigger for per-
sistent neuropathic pain

After peripheral nerve injury, modifications are observed
at several anatomical locations, including: 1) a large in-
crease in spontaneous (ectopic) impulse discharge in the
injured afferent fibers leading to the DRG, and in DRG cell
bodies[114]; 2) abnormal contacts between sympathetic and
sensory nervous systems[76]; and 3) changes in the spinal
cord and brain.  Although much is known about what
molecular and cellular changes occur at these sites in neuro-
pathic pain, including changes in gene expression[38,115,116],
it is not clear what event(s) and which anatomical site(s)
are critical in initially triggering the development of neuro-
pathic pain.

In commonly used animal models of neuropathic pain,
pain behaviors appear within the first 12 h-2 d post injury[117-119].
Spontaneous activity appears this rapidly also. Most other
pathological changes, such as spinal cord sensitization and
altered gene expression, begin later than this.  Spontane-
ous afferent activity is therefore a likely candidate for initi-
ating chronic pain.  A key observation is that temporarily
blocking spontaneous activity reduces or eliminates spon-
taneous pain, hyperalgesia, and allodynia in a variety of
pain models.  This has been demonstrated in several dif-
ferent models and using methods to suppress spontaneous
activity that vary widely in their specific targets[25,70,120-123].

In recent studies using rat models of neuropathic pain, it
was shown that local, short-term nerve blockade of this
afferent activity permanently inhibits the subsequent de-
velopment of both thermal hyperalgesia and mechanical
allodynia (Fig. 5). Timing is critical － the nerve blockade
must last at least 3-5 d and is effective if started immedi-
ately after nerve injury, but not if started at 10 d after injury
when neuropathic pain is already established[124] (Fig. 6).
The results validate the principle of pre-emptive analgesia.
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Fig. 6. Once the neuropathic pain is established, bupivacaine or TTX nerve blockade is no longer effective in preventing subsequent pain
behaviors.  Rats with CCI were tested for thermal pain (A, B) and mechanical pain (C, D). Difference scores are presented for each experiment,
using the same format as in Fig. 5.  Contrary to the results in Fig. 5, application of TTX or bupivacaine starting 10 d after onset of neuropathic
pain (shaded areas) was not effective in preventing subsequent thermal hyperalgesia or mechanical allodynia.  Omitting data from the blockade
period (days 10-17), there were no significant differences between drug-treated and untreated groups in either of the CCI experiments shown
(One-way ANOVA with Dunnett’s post test or Mann-Whitney test). Reproduced from Xie et al., Pain, 2005[124].

Fig. 5. Local application of nerve blockers during the initial stage of neuropathic pain is sufficient to inhibit the subsequent development of
neuropathic pain.  Rats with chronic constriction injury (CCI) of the sciatic nerve were tested for thermal pain (A, B) and mechanical pain (C,
D).  Thermal hyperalgesia lasted over 30 d, and mechanical allodynia lasted over 60 d. Nerve blockade applied at the initial stage of neuropathic
pain (shaded areas) by 200 mg bupivacaine (A, C) or by TTX (7-day) (B, D) prevented the development of neuropathic pain.  Duration of
blocker activity (shaded areas) was estimated in previous experiments. Mechanical pain threshold was defined as the lowest applied force that
caused at least three withdrawals out of the five consecutive applications, with a cutoff value of 18 g. Cutaneous sensitivity to mechanical and
thermal stimuli was expressed as difference scores, with negative values corresponding to increased pain sensitivity.  For all data shown, the
groups with nerve blockade (n = 6-7) differed significantly from the group with CCI only (n = 6; one-way ANOVA with Dunnett’s post test,
P<0.01).  The CCI plus saline pump group (n = 6) did not differ significantly from CCI only. Reproduced from Xie et al., Pain, 2005[124].
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have not started immediately after the injury, or have used
agents active in the spinal cord that may not have reduced
ectopic activity in the DRG.  Results suggest that effective
pre-emptive analgesia can be achieved only when nerve
block is administered early after injury and lasts several
days. In addition, results suggest that applying local blockers
of spontaneous activity to a limited area of peripheral nerve
might have a dramatic impact on the development of neuro-
pathic pain while avoiding the toxicity that occurs with
systemic drugs.

6  Summary

Abnormal sympathetic sprouting has been observed in a
variety of animal models of pathological pain with or with-
out damage to the peripheral axons. Sprouted fibers are
found preferentially surrounding large- and medium-sized
sensory neurons with spontaneous activity. Both of the
fiber density and the number of basket are decreased by
local nerve blockade or by systemic administration of anti-
inflammatory corticosteroid.  Similar results are found for
nerve injury-induced pain behaviors. As illustrated in Fig. 7,
these findings support an inflammation-driven and activity-
mediated mechanism for nerve injury-induced sympathetic
sprouting and neuropathic pain.
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