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Abstract: ATP-sensitive potassium (KATP) channels are widely distributed in vasculatures, and play an important role in the vascular 
tone regulation. The KATP channels consist of 4 pore-forming inward rectifier K+ channel (Kir) subunits and 4 regulatory sulfonylurea 
receptors (SUR). The major vascular isoform of KATP channels is composed of Kir6.1/SUR2B, although low levels of other subunits 
are also present in vascular beds. The observation from transgenic mice and humans carrying Kir6.1/SUR2B channel mutations 
strongly supports that normal activity of the Kir6.1/SUR2B channel is critical for cardiovascular function. The Kir6.1/SUR2B channel 
is regulated by intracellular ATP and ADP. The channel is a common target of several vasodilators and vasoconstrictors. Endogenous 
vasopressors such as arginine vasopressin and α-adrenoceptor agonists stimulate protein kinase C (PKC) and inhibit the KATP channels, 
while vasodilators such as β-adrenoceptor agonists and vasoactive intestinal polypeptide increase KATP channel activity by activating 
the adenylate cyclase-cAMP-protein kinase A (PKA) pathway. PKC phosphorylates a cluster of 4 serine residues at C-terminus of 
Kir6.1, whereas PKA acts on Ser1387 in the nucleotide binding domain 2 of SUR2B. The Kir6.1/SUR2B channel is also inhibited by 
oxidants including reactive oxygen species allowing vascular regulation in oxidative stress. The molecular basis underlying such a 
channel inhibition is likely to be mediated by S-glutathionylation at a few cysteine residues, especially Cys176, in Kir6.1. Further-
more, the channel activity is augmented in endotoxemia or septic shock, as a result of the upregulation of Kir6.1/SUR2B expression. 
Activation of the nuclear factor-κB dependent transcriptional mechanism contributes to the Kir6.1/SUR2B channel upregulation by li-
popolysaccharides and perhaps other toll-like receptor ligands as well. In this review, we summarize the vascular KATP channel regula-
tion under physiological and pathophysiological conditions, and discuss the importance of KATP channel as a potentially useful target 
in the treatment and prevention of cardiovascular diseases.
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摘  要：ATP敏感钾通道(ATP-sensitive potassium channel, KATP通道)广泛分布在血管系统，并在血管张力调节中发挥重要作
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用。 KATP通道由4个孔道形成的内向整流钾离子通道(inward rectifier K+ channels, Kir)亚基和4个磺脲受体调节亚基(sulfonylu-
rea receptor, SUR)组成。尽管其它一些亚基在血管中也存在，Kir6.1/SUR2B是主要的血管亚型KATP通道。KATP通道转基因小

鼠的研究以及人群中KATP通道基因突变的发现，都强烈支持KATP通道对于心血管系统的动态平衡调控是不可缺少的。大量的

血管活性物质通过调节KATP通道活性来改变血管平滑肌细胞的膜电位，从而调节血管张力。多数内源性血管收缩物质，例如

血管加压素，激活蛋白激酶C (protein kinase C, PKC)，磷酸化KATP通道并抑制其活性；而血管扩张物质，如血管活性肠肽，

通过增加cAMP的形成和提高蛋白激酶A (protein kinase A, PKA)的活性来增加KATP通道的活性。PKC作用于Kir6.1亚基C-末
端，磷酸化4个保守的丝氨酸，而PKA磷酸化SUR2B亚基第2核苷酸结合域的Ser1387位点。血管KATP通道也受活性氧的调

节，其中Kir6.1的Cys176是一个重要的过氧化物调节位点。此外，KATP通道功能可被一些慢性的病理生理条件上调，如感染

性休克。核因子-κB依赖的基因转录是脂多糖诱导的血管KATP通道激活的一个机制。本综述将概括性描述血管KATP通道在生

理和病理情况下受到的调节，以期阐明血管KATP通道在治疗和预防心血管疾病方面可能是一个有用的靶点。
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1  Introduction

The ATP-sensitive K+ (KATP) channel was firstly identi-
fied by Noma in cardiac myocytes [1]. The KATP channel 
differs from other inward rectifier K+ channels (Kir) in 
that it is sensitive to intracellular ATP concentration [1]. 
Besides in cardiac myocytes, KATP channels have also 
been found in skeletal myoctes [2] and pancreatic β 
cells[3]. In 1989, Standen et al. [4] recorded a novel KATP 
current in rabbit mesenteric arterial smooth muscle 
cells (SMCs). The current is enhanced by vasoactive 
intestinal polypeptide (VIP) and a KATP channel opener 
cromakalim, and suppressed by glibenclamide, similar 
to currents carried by other KATP channels identified 
previously. In the presence of pinacidil, the Kir6.1/
SUR2B is stimulated by micromolar ATP and millimo-
lar UDP or ADP, and higher doses (1–3 mmol/L) of 
ATP inhibits the channel, properties that lead to the 
name KNDP channel [5]. Subsequently, KATP channels 
were found to be broadly expressed in vasculatures[6, 7].  
Cloning of Kir6.x and SUR subunits of KATP channels 
in the mid-1990s, and the generation of KATP channel 
transgenic mice in 2000s, have greatly extend our un-
derstanding in the biophysical features and physiologi-
cal functions of vascular KATP channel.  Recently, re-
ports of KATP mutations in human patients start to reveal 
the role of KATP channel in pathophysiological condi-
tions [8–10].  

2  Molecular structures of vascular KATP channels

KATP channels are octameric protein complexes contain-
ing 4 pore-forming Kir6 subunits and 4 accessory sul-
fonylurea receptor (SUR) subunits (Fig. 1). To date, 

two Kir6.x genes (KCNJ8 for Kir6.1, and KCNJ11 for 
Kir6.2) and two SUR genes (ABCC8 for SUR1 and 
ABCC9 for SUR2A and SUR2B) have been identified. 
The Kir6.x share 40%–50% homology in amino acid 
sequence with other Kir channels. Structural studies 
suggest the Kir6.x subunit has 2 transmembrane helixes 
(M1 and M2), cytoplasmic N- and C-termini and a 
pore-forming loop with a glycine-phenylalanine-gly-
cine signature motif for K+ selectivity [11]. In symmetri-
cal 140 mmol/L K+ recording conditions, the unitary 
conductance of Kir6.1-containing channels is ~35 pS 
(Kir6.1/SUR2B) [12],  whereas Kir6.2-containing chan-
nels is ~80 pS (Kir6.2/SUR2B) [13].

Functional expression of KATP channel requires co-
expression of SUR subunit [14], which is under the cat-
egory of ATP-binding cassette transporter (ABCC) 
family. SUR1 is dominantly expressed in pancreatic β 
cells. SUR2 has two variants: SUR2A and SUR2B, 
which are produced by alternative splicing of exon 38 
in ABCC9 [13, 15]. They are different in the last 42 amino 
acids in the C terminus. SUR2A is mainly expressed in 
myocardium and skeletal muscles, whereas SUR2B is 
generally distributed in smooth muscles. SUR subunit 
has 3 transmembrane domains (Fig. 1): TMD1 and 
TMD2 with 6 transmembrane segments in each, plus 
TMD0, an N-terminal transmembrane domain with 5 
transmembrane segments. There are two large intracel-
lular loops connecting the adjacent TMDs (Fig. 1). 
Each intracellular loop contains a nucleotide binding 
domain (NBD1 and NBD2, respectively). A Walker A 
motif (WA), a Walker B motif (WB), and a linker region 
are located within the NBDs and are critical for nucle-
otide binding [11]. 
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The main body of SUR2B (TMD1, 2 and NBD1, 2) 
shares many properties with other transmembrane AB-
CCs. Thereof it can be modeled with the bacteria ATP 
binding protein SAV1866 [16].  The TMDs and NBDs 
display a twisted interaction: TMD1 mainly interacts 
with NBD2 and TMD2 mainly with NBD1[16].  This in-
tercrossed interaction might have a significant effect on 
protein kinase A (PKA) phosphorylation and regula-
tion, for a phosphorylation site has been found in 
NBD2 domain (see below for detail).   

3  Evidence of vascular KATP channel function 
from transgenic mouse models and human 
diseases

KATP channels have been demonstrated to play a sub-
stantial role in vascular tone regulation by using tradi-
tional pharmacological approaches, including the appli-
cation of KATP channel openers, such as pinacidil, 
diazoxide and cromakalim, and KATP channel blockers, 
such as sulfonylureas (tolbutamide, glibenclamide) and 

PNU-37883A.  Transgenic mouse models provide more 
specific strategies to understand the impacts of KATP 
channels on cardiovascular system. In general, both 
Kir6.1 and SUR2 knockout mice exhibit coronary arte-
rial spasm and sudden early death, with EKG showing 
frequently spontaneous ST segment elevation [17, 18]. In 
addition, Kir6.1-null mice are more sensitive to endo-
toxemia, suggesting functional KATP channel is impor-
tant for survival from sepsis [19, 20]. Since KATP channel is 
distributed in vascular endothelial cells as well as 
SMCs, both of which contribute to vascular tone regu-
lation, the function of endothelial KATP channel has 
been noticed recently. In a transgenic animal model, 
SUR2B expression is selectively knocked in in SMCs. 
These SUR2-null mice remain to show coronary vasos-
pasm similar to Kir6.1 knockout mice, suggesting that 
KATP channel in vascular smooth muscle (VSM) is not 
enough for vascular tone regulation[21]. In another study, 
transgenic mice expressing dominant negative Kir6.1 
subunits exclusively in endothelium exhibit an elevated 
endothelin-1 (ET-1) release and an increase in coronary 

Fig. 1. Molecular structure of the vascular KATP channel. KATP channels are octameric complexes formed by 4 Kir6 subunits (Kir6.x) and 4 
accessory sulfonylurea receptor (SUR) subunits. The Kir6.x subunit has 2 transmembrane helixes. SUR subunit has 3 transmembrane 
domains (TMD0, 1 and 2). There are two intracellular loops linking the adjacent TMDs. Each intracellular loop contains a nucleotide 
binding domain (NBD1 and NBD2, respectively). A Walker A motif (WA), a Walker B motif (WB), and a linker region are located 
within the NBDs. The Ser379, Ser385, Ser391, and Ser397 at the distal C-terminus of Kir6.1 are PKC phosphorylation residues. The 
Ser1387 is PKA phosphorylation residue. The Cys176 in the transmembrane domain of Kir6.1 is the major residue accounting for the 
channel’s oxidant sensitivity.
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resistance[22]. These observations thus suggest that en-
dothelial KATP channel is important for coronary circu-
lation.  

Recently, several mutations of vascular KATP channels 
were found in human patients. A missense mutation in 
exon 3 (S422L) of KCNJ8 was identified in a patient 
presenting massive accentuation of the early repolariza-
tion and recurrent ventricular fibrillation in EKG with 
normal coronary angiography [8]. The S422L mutation 
was also found by another group in 2 patients present-
ing J-wave syndrome[9]. The current density of Kir6.1 
S422L/SUR2A channel heterologously expressed in 
COS-1 cells is increased by ~65%. Two other KCNJ8 
mutations (an in-frame deletion E332del and a mis-
sense mutation V346I) located at Kir6.1’s C-terminus 
were found in sudden infant death syndrome (SIDS) 
patients. Patch clamping shows that the pinacidil-stim-
ulated KATP currents are reduced by ~50% in E332del 
and V346I. The loss-of-function KCNJ8 mutations may 
result in a maladaptive cardiac response to systemic 
metabolic stimulators leading to SIDS[10]. 

4  Sepsis susceptibility 

In a genome-wide association study using N-ethyl-N-
nitrosourea in-vivo mutagenesis, Beutler and his col-
leagues screened a large population of mice and identi-
fied 4 strains that were highly susceptible to multiple 
infectious pathogens, including cytomegalovirus, li-
popolysaccharides (LPS), synthetic Toll-like receptor 3 
(TLR3) ligand polyinosine: polycytidylic acid and 
TLR9 agonists CpG oligodeoxynucleotides[19]. They 
have found that the high sepsis susceptibility is due to 
Kcnj8, as disruptions of the locus containing Kcnj8 are 
present in the homozygous form in all the 4 strains of 
mice. Their mutagenesis study suggests that the LPS 
hypersensitivity phenotype is not suppressed by muta-
tions in Myd88, Trif, Tnf, Tnfrsf1a, Ifnb, Ifng or Stat1 
as well as several other genes known to contribute to 
inflammation responses. The investigators believe that 
their forward genetic approaches also can exclude tu-
mor necrosis factor (TNF), type-I interferon (IFN), and 
type-II IFN as essential lethal factors, because mice 
that lacked these receptor genes succumbed to low dos-
es of LPS. These control studies strongly suggest that 
the sepsis hypersusceptibility is not a result of these 
genes and pro-inflammation cytokines. Consistent with 
these observations, Kcnj8-knockout mice show severe 
survival disadvantages in response to septic pathogens, 

with progressive deterioration in cardiac activity, isch-
emic myocardial damage, and myocardial contractile 
dysfunction [20]. Since genetic disruption of KATP chan-
nels is not lethal in mice, these studies indicate that ac-
tivation of the KATP channels is crucial for the systemic 
response to sepsis by retaining myocardial perfusion.

Studies by Beutler, Hoffman and their colleagues in-
dicate that the KATP channel also functions in antiviral 
activity in Drosophila. Knockout of the dSUR gene in-
creases the lethality of Drosophila after infection with 
the cardiotrophic flock house virus (FHV) [19]. Similar 
effects were observed by knockdown of both Ir and Ir2 
genes [23]. In the KATP mutant flies, FHV causes rapid 
viremia and death, likely to be mediated by modulating 
the antiviral RNA interference in the heart, while flies 
treated with the KATP agonist pinacidil are protected 
against the viral infection [23].  

5  Regulation of vascular KATP channels

The regulation of vascular KATP channels is composed 
by an immediate and a delayed phase. The immediate 
regulation by most of metabolites, hormones and neu-
rotransmitters is through channel gating, whereas tran-
scriptional mechanisms contribute to the delayed regu-
lation.

5.1  Metabolites

5.1.1  ATP/ADP
KATP channels are subject to a direct and fast regulation 
by intracellular ATP and ADP. Such modulations di-
rectly link the cellular metabolic states to membrane 
electric activities. ATP reduces the vascular KATP chan-
nel activity; however, the inhibitory effects of ATP are 
variable in different reports[24].  Due to a relatively high 
intracellular ATP concentration in physiological condi-
tion (1–11.7 mmol/L), the vascular KATP channels usu-
ally display a low activity at rest[25].  In comparison, in-
tracellular ADP concentration ranges between 0.1 and 3 
mmol/L [25],  and exhibits stimulatory effect on KATP 
channel. According to this characteristic, vascular KATP 
channel was once termed as KNDP channel[5, 26].  

5.1.2  pH
pH changes in local tissues are very common in heavy 
exercise, hypoxia, ischemia, and severe diabetes. Hy-
percapnia and acidosis relax blood vessels, especially 
cerebral arterioles, and increase regional blood flow in 
circulation[27, 28].  Hypercapnic acidosis induces vasodi-
lation through activation of KATP channels in VSMs, 
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with maximal effect at pH 6.5 to 6.8 [29]. Blockade of 
KATP channels attenuates the vasodilation, which is ob-
served in cerebral arterioles, basil artery, coronary ar-
tery, mesenteric artery or internal mammary artery. The 
modulations of KATP channel activity by H+, ATP and 
ADP are mediated via direct ligand binding to Kir6.x 
or SUR, leading to alternation in the channel gating [30–32].
5.1.3  Nitric oxide (NO)
NO is released by endothelial cells and causes vasodi-
lation. It is reported NO hyperpolarizes SMCs in rabbit 
mesenteric arteries through increasing cGMP and acti-
vating KATP channels[33]. NO released from skeletal 
muscle vasculatures during excise may activate vascu-
lar KATP channels, and antagonizes sympathetic vaso-
constriction, providing a delicate mechanism to reg-
ulate blood flow in exercising skeletal muscles[34].  
Lactate, an important metabolic product in retina, re-
laxes retinal arterioles through activation of nitric oxide 
synthase (NOS) and guanylyl cyclase, and opening of 
KATP channel [35]. However, it is also reported that NO 
donor sodium nitroprusside fails to activate KATP cur-
rents isolated from rabbit mesenteric arterial SMCs and 
pig coronary arterial SMCs [36, 37]. Therefore, the exact 
role of NO in regulating vascular KATP channels is still 
debatable.  
5.1.4  Eicosanoids
Epoxyeicosatrienoic acids (EETs) are cytochrome 
P-450 metabolites of arachidonic acid synthesized in 
endothelial cells[38].  Since EETs participate in vasodila-
tion by hyperpolarizing cell membrane, some groups 
classified them in endothelium-derived hyperpolarizing 

factors (EDHFs) [39, 40].  Both 11, 12-EET and 14, 15-
EET induce dose-dependent vasodilation in isolated 
small mesenteric arteries through activation of KATP 

channels [41, 42], but the underlying mechanisms seem to 
be different: 11, 12-EET activates mesenteric SMC 
KATP channels through PKA [42], whereas the stimulation 
of 14, 15-EET depends on ADP-ribosylation of Gs [41].
5.1.5  Hydrogen sulfide (H2S)
H2S is a product from L-cysteine metabolism catalyzed 
by cystathionine-γ-lyase and cystathionine-β-synthase 

in mammalian tissues. Endogenous H2S has been de-
tected in various vascular tissues (e.g. aorta, tail, and 
mesenteric arteries) [43]. H2S in physiological concentra-
tions (nearly 45 µmol/L) induces vasodilation in rat 
aorta and transient reduction of blood pressure through 
activation of KATP channels [44, 45]. Pinacidil- and H2S-
induced vasorelaxation are compromised in cerebral 
arterioles of SUR2-null mice[46].  Patch clamping stud-
ies demonstrate that exogenous H2S activates KATP 
channels and hyperpolarizes cell membrane in SMC 
isolated from rat mesenteric artery [47] and piglet ce-
rebral arterioles [46].  In addition, aortic rings seem to 
be more sensitive to H2S than pulmonary arterial rings. 
The reason could be due to the increased SUR2B ex-
pression in aorta [48]. Recently, a slow-releasing hydro-
philic H2S compound GYY4137 has been demonstrated 
to display vasorelaxing effect in rat endothelium-intact 
aortic rings and perfused rat renal vasculature through 
stimulation of vascular KATP channels[49].  Because 
GYY4137 reduces blood pressure in hypertensive rats 
without changing heart rate or contracting force in vit-
ro, it could be a promising drug for anti-hypertension 
therapy in future. 
5.2  Hormones and neurotransmitters 
Vascular KATP channels are regulated by many hor-
mones and neurotransmitters (Table 1). Based on vaso-
active functions, these endogenous vasoactive sub-

Table 1. Summary of vasoactive substances targeting vascular KATP channels 
 Vasoactive substances Receptor Distributions References
Vasoconstrictors Noradrenaline α2 Rat tail artery [55] 
 Endothelin-1 N/A Rabbit coronary and pulmonary arteries [56] 
 Anginotension II N/A Rat mesenteric artery [57] 
 AVP V1a Rat mesenteric artery [54] 
 Neuropeptide Y NPY1 Rabbit mesenteric artery, dog coronary artery [58, 59]
 Serotonin 5-HT2 Rabbit mesenteric artery [58] 
 Histamine H1 Rabbit mesenteric artery [58]
Vasodilators Adenosine A2 Rat mesenteric artery, guinea pig coronary artery [60, 61]
 VIP VPAC1 Rat mesenteric artery [62] 
 Glucagon-like peptide-1 GLP-1 Rat aorta [63]  
 CGRP N/A Rabbit mesenteric artery, pig coronary artery [36, 37]
N/A, not reported.
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stances are classified into two groups: vasoconstrictors 
and vasodilators. The receptors of these substances are 
coupled to Gq and Gs respectively. Gq activation stimu-
lates phospholipase C (PLC), which converts mem-
brane phospholipids to diacylglycerol (DAG) and inos-
itol triphosphate (IP3). DAG subsequentially activates 
protein kinase C (PKC). Gs activation stimulates adeny-
lyl cyclase, which catalyzes ATP to produce cAMP. The 
elevated cAMP in turn binds to regulatory subunits of 
PKA, leading to PKA dissociation and release of the 
catalytic subunits. Vascular KATP channels are substrates 
of both PKC and PKA (see below).  

Understanding the molecular mechanism underlying 
how these vasoactive substances regulate KATP channel 
is important. As an example, arginine vasopression 
(AVP, 0.01–0.04 U/min) was recommended for man-
agement of sepsis to avoid using high concentration of 
catecholamines (e.g. norepinephrine, dopamine) [50] and 
improve insufficiency of AVP secretion in septic pa-
tients[51, 52]. However, a dose higher than 0.03 U/min is 
not recommended since it may induce coronary vaso-
constriction and impair cardiac function[53].   Studies 
using exogenous expression system show that vascular 
KATP channel activity is inhibited by AVP [54]. AVP binds 
to V1a receptor and activates PKC leading to a reduced 
channel open probability. Therefore, it is likely that 
AVP elevates blood pressure by inhibiting KATP chan-
nels located in peripheral blood vessels, and decreases 
coronary perfusion through inhibiting coronary arterial 
KATP channels.
5.3  Post-translational regulation
5.3.1  PKC pathway
As shown in Table 1, most vasoconstrictors inhibit 
Kir6.1/SUR2B channel activity though Gq protein cou-
pled receptor stimulation which results in PKC activa-
tion. Patch clamp recording shows that Kir6.1/SUR2B 
channel rather than Kir6.2/SUR2B channel is sensitive 
to PKC activation, suggesting Kir6.1 subunit is the tar-
get of PKC[64]. Further investigation shows that a motif 
containing Ser379, Ser385, Ser391 and Ser397 at the 
distal C-terminus of Kir6.1 is phosphorylated by PKC 
(Fig. 1) [64]. The 4 serine residues display a repeated 
pattern (SXRR/KXN) where the underlined S are the 
phosphorylation sites. The channel inhibition by PKC 
is slightly reduced when either of the serine residues is 
mutated to unphosphorylable alanine. The PKC effect 
is gradually diminished when more serines are mutated.  
The PKC inhibition is almost completely eliminated 

when all the 4 residues are mutated. The additive ef-
fects of the repeating PKC sites may allow the channel 
activity to be elaborately regulated according to the 
levels of PKC stimulation.  PKC activation may also 
result in caveolin-1 dependent internalization of vascu-
lar KATP channel [65], which might occur after the imme-
diate response of channel inhibition and act as a long-
term effect of PKC modulation.
5.3.2  PI3K-Akt pathway
The inhibitory effect of PKC on vascular KATP channel 
could be reduced by activation of phosphatidylinositol 
3-kinases (PI3K)-Akt pathway. Phenylephrine, an α 
adrenergic receptor agonist that stimulates PKC, in-
creases Akt phosphorylation in rat endothelium-denud-
ed aorta. A PI3K inhibitor LY294002 enhances levcro-
makalim-induced vasodilation in aortic rings after pre-
exposure to phenylephrine. The levcromakalim-induced 
KATP currents in the presence of phenylephrine are en-
hanced by an α adrenergic receptor blocker phen-
tolamine and LY294002[66].  Therefore, PI3K-Akt path-
way may provide a negative feedback to regulate vas-
cular KATP channel upon PKC activation. The PI3K-Akt 
pathway may also be involved in the high glucose-
induced vascular KATP channel dysfunction. Human en-
dothelium-denuded omental artery treated with D-
glucose (20 mmol/L) shows increased membrane 
expression of PI3K p85 α subunit and nicotinamide-
adenine dinucleotide phosphate (NADPH) oxidase sub-
units (p47phox, p22phox, and Rac-1), and elevated Akt 
phosphorylation as well as intracellular superoxide 
(O2

−) production. High glucose impairs levcromakalim-
induced vasorelaxation and cell membrane hyperpolar-
ization, but can be antagonized by LY294002 or O2

− 
generation inhibitors (tiron and apocynin) [67]. 
5.3.3  PKA pathway
Most vasodilators increase Kir6.1/SUR2B channel ac-
tivity by stimulating Gs protein coupled receptors lead-
ing to cAMP elevation and PKA activation. Quinn et 
al. have showed that PKA directly phosphorylates 
Kir6.1/SUR2B channels at 3 residues (Kir6.1 S385, 
SUR2B T633 and S1465) [68].  Our recent data have 
showed that 2 different serine residues (Ser1351 and 
Ser1387) located in the NBD2 of SUR2B are necessary 
for the channel activation. The Ser1387 is phosphory-
lated in an in vitro phosphorylation assay (Fig. 1) [69].  
Further SUR2B modeling study based on the TMD to-
pology of ABC protein SAV1866 suggests that Ser1387 
is located on the interface of NBD2 with TMD1 and 
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physically interacted with Tyr506 in TMD1 [16]. A posi-
tively charged residue (Arg1462) in NBD2 is close to 
Ser1387. The three residues produce compact triad 
upon PKA phosphorylation on Ser1387, leading to re-
shaping of the NBD2 interface and interdomain move-
ment of NBD2 and TMD1 (Fig. 2). Mutation in any of 
the three residues diminishes PKA-dependent channel 
activation. Therefore, Ser1387 phosphorylation in-
creases the NBD-TMD coupling efficiency, and opens 
the channel. 

cAMP also stimulates exchange protein directly acti-
vated by cAMP (Epac) which co-localizes with vascu-
lar KATP channel subunits and inhibits the channel 
activity via Ca2+-sensitive protein phosphatase 2B (cal-
cineurin). The concentration of cAMP required to stim-
ulate Epac is higher than PKA [70]. Therefore, cAMP 
shows two phases of regulation on vascular KATP chan-
nels: cAMP at low concentration activates the KATP 
channel via PKA, while a high concentration of cAMP 
inhibits channel activity through Epac. 

Another interesting aspect is that the PKA-dependent 
Kir6.1/SUR2B channel activation can be antagonized 
by calcineurin [71]. The mechanisms may be due to: (1) 
calcineurin reduces PKA activity leading to an indirect 
channel inhibition; (2) calcineurin directly dephospho-
rylates the channel. However, it is unknown if calcineu-
rin can modulate the PKA phosphorylation sites at 
SUR2B. Nevertheless, calcineurin seems to balance the 
effects of cAMP/PKA on vascular KATP channels.
5.3.4  Reactive oxygen species (ROS) and S-glutathi-
onylation
An overproduction of ROS is one of the characteristics 
of oxidative stress which contributes to the develop-
ment of many types of diseases, such as diabetes, ath-
erosclerosis and sepsis [72]. The effect of ROS on KATP 
channel has been noticed recently. Cerebral arterioles 
treated with O2

− show a less vasorelaxation response to 
cromakalim [73]. A pre-exposure of isolated mesenteric 
arterial rings to H2O2 also attenuates the KATP channel-
mediated vasorelaxation [74]. In a diabetic rat model, 
pinacidil-induced vasodilation in cerebral arterioles is 
impaired, but is completely restored by treatments with 
superoxide dismutase (SOD) and catalase[75]. Similar 
impaired vascular responses to KATP channel openers 
are also observed in diabetic patients[76]. Therefore, the 
ROS overproduction in oxidative stress disrupts vascu-
lar KATP activity. 

Recent studies have showed that H2O2 induces a glu-

tathione (GSH) dependent Kir6.1/SUR2B channel inhi-
bition, which can be mimicked by oxidized glutathione 
(GSSG) or thiol-modulating reagents[74]. The oxidant-
mediated channel suppression is rescued by the reduc-
ing agent dithiothreitol (DTT) and the specific degluta-
thionylation agent glutaredoxin-1 (Grx1), suggesting 
S-glutathionylation is a mechanism underlying the 
channel modulation in oxidative stress. Moreover, it 
has been identified that Cys43 in N-terminus, Cys120 
and Cys176 in the transmembrane domain of Kir6.1, 
accounts for the oxidant sensitivity. Among the 3 resi-
due, Cys176 makes a major contribution (Fig. 1). Us-
ing structural modeling, how the addition of GSH to 
the channel protein can affect the gating of KATP chan-
nel has been studied. Simulation modeling suggests 
that after binding residue Cys176, the GSH moiety oc-
cupies a space between the slide helix and two trans-
membrane helices. Since the gating of KATP channel re-
quires the movement of inner transmembrane helix, the 
addition of GSH in this critical location limits the con-
formational changes of the inner transmembrane helix, 
thus impairs channel gating and retains the channel in 
its closed state (Fig. 3) [77].
5.4  Transcriptional regulation
The expression of KATP channel subunits could be al-
tered in some medical conditions and diseases. For in-
stance, a declined SUR2B mRNA instead of Kir6.1 and 
Kir6.2 is observed in SMCs dissociated from diabetic 
rat aorta[78]. The Kir6.1 and SUR2B expression (mRNA 
and protein) in aortic SMCs, as well as the isolated 
KATP current density, are also reduced in obese rats[79]. 
Flow stress elevates the expression of Kir6.2 (both 
mRNA and protein) in rat pulmonary microvascular 
endothelial cells[80].

The KATP channel activity may also be subject to 
chronic hypoxic regulation. Glibenclamide reduces va-
sorelaxation of pial arterioles during hypoxia in vivo[81]. 
The diazoxide-induced vasodilation in near-term preg-
nant uterine arteries is compromised after long-term 
exposure to hypoxia at high altitude[82]. The molecular 
mechanism underlying the causal relationship between 
hypoxia and vascular KATP channel is not well exam-
ined. However, the mRNA and protein expression of 
Kir6.1 and Kir6.2 are up-regulated under venous hy-
poxemia in right atrium of patients with tetralogy of 
Fallot or ventricular septal defects. The study shows 
that Kir6.1 mRNA transcription is Forkhead box (FOX) 
O1 dependent, whereas FOXO1 transcription is hypoxia-



Acta Physiologica Sinica, February 25, 2012, 64(1): 1–13 8

Fig. 2. Model of SUR2B core domains.  A: SUR2B core domains (TMD1, 2 and NBD1, 2) are modeled using SAV1866 as a template.  
Shaded region is plasmic membrane. B: The interface between TMDs and NBDs are highlighted. Intracellular loop-1 (ICL1) of TMD1 
physically interacts with NBD1 and NBD2. ICL2 of TMD1 only interacts with NBD2. Thus TMD1 mainly interacts with NBD2. 
Similarly, TMD2 mainly interacts with NBD1. C and D: The three critical residues involved in PKA phosphorylation are highlighted.  
Note the side chain of Arg1462 is far from phosphorlation residue Ser1387 before phosphorylation. It is attracted by phosphorylated 
Ser1387 (p-Ser1387) after PKA phosphorylation and forms a tight triad with p-Ser1387 and Tyr506. The figure is modified from Jour-
nal of Biological Chemistry with permission [16].

Fig. 3. Structural modeling of Kir6.1 protein with the incorporation of GSH. The overall structural model of two opposing Kir6.1 
monomers (out of four for clarity) was displayed. Boxed area was enlarged and showed the GSH associated area. The GSH moiety oc-
cupies a space between the inner and outer helix. The addition of GSH therefore impairs the movement of inner helix, which is neces-
sary for the channel opening. The figure is modified from Journal of Biological Chemistry with permission [77]. 
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inducible factor-1α (HIF-1α) dependent. Moreover, the 
study on cultured rat atrial myocytes also confirmed the 
causal relationships among hypoxia, HIF-1α, FOXO1, 
and Kir6.1 [83].

KATP channel exhibits a high channel activity in sep-
sis. Glibenclamide has been tested in several septic ani-
mal models and shows to raise blood pressure through 
increasing systemic vascular resistance[84, 85]. PNU-
37883A , an KATP channel inhibitor targeting the pore 
region of Kir6 subunit,  displays more potent inhibitory 
effect on Kir6.1/SUR2B than Kir6.2/SUR2B[86], and 
provides better outcomes to reverse LPS-induced vas-
cular hyporeactivity to circulating epinephrine [87]. The 
high channel activity is mainly due to upregulation of 
KATP channel expression. Both mRNA and protein lev-
els for Kir6.1 are increased in the diaphragm of rats 
treated with LPS, with the mRNA level increased by 
4-fold in 48 h, whereas protein levels augmented 9-fold 
after 24 h[88]. Moreover, Kir6.1 expression in colonic 
smooth muscle is enhanced by 22-fold, and the mRNA 
level for SUR2B is decreased by 3-fold in experimental 
colitis[89]. We reveal that an overnight LPS treatment 
hyperpolarizes aortic SMCs. Whole cell patch clamp-
ing shows that KATP current density is elevated in aortic 
SMCs exposed to LPS, but not changed in HEK293 
cells heterologously expressing Kir6.1/SUR2B. The in-
creased protein surface expression is due to nuclear 
factor (NF)-κB-dependent Kir6.1 and SUR2B mRNA 
expression[90]. Such an upregulation increases KATP 
channel activity, and may lead to excessive vasodila-
tion during sepsis. A recent study using a rat septic 
shock model induced by peritonitis shows that septic 
vascular hyporeactivity is improved by PNU-37883A 
but not high-conductance Ca2+-activated K+ (BKCa) 
channel blocker IbTX. In consistent, sepsis increases 
mRNA and protein expression of Kir6.1 and SUR2B 
subunits, but does not change expression of BKCa chan-
nels. The elevated aortic NO release, NF-κB activation, 
and KATP channel upregulation are inducible NOS de-
pendent[91]. These observations again suggest that a 
transcriptional mechanism underlying the KATP channel 
regulation during sepsis, and indicate that selectively 
inhibiting vascular KATP channel could offer promising 
therapeutic approaches to manage septic shock.

5.5  Non-sulfonylurea anti-diabetic agents 
Some anti-diabetic agents that are not categorized in 
sulfonylurea family have been demonstrated to affect 
vascular KATP channel activity recently. Rosiglitazone 

(RSG) reduces blood glucose level by increasing insu-
lin sensitivity and glucose uptake in skeletal muscle 
and adipose tissues. Our recent study have showed that 
RSG is not only able to inhibit the Kir6.1/SUR2B 
channels in a membrane-delimited manner, but also at-
tenuate the adrenergic mediated coronary vasodila-
tion[92]. The vasoactive effect is Kir6.1 dependent, be-
cause the isolated hearts from Kir6.1 knockout mice 
show less response to RSG. Phenformin is a biguanide 
that used to treat type II diabetes mellitus. It is more se-
lective to block Kir6.1/SUR2B channel, with a 90% re-
duction of open probability in inside out patch, and also 
inhibit the KATP current in native vascular SMCs[93]. 
These results suggest that RSG and phenformin not 
only reduce blood glucose, but also act as vascular KATP 
channel inhibitors, and may potentially reduce coronary 
response to circulating vasodilators and metabolic 
stress.

6  Summary

Ample evidence from experimental animal models and 
the identification of KATP channel mutations in patients 
indicate that KATP channel plays a critical role in vascu-
lar tone regulation, and likely contributes to the patho-
genesis of many cardiovascular diseases. It remains 
challenging to design therapeutic modalities based on 
an intervention to the KATP channel. For an example, 
LPS-induced vascular KATP channel upregulation may 
be a myocardial protective mechanism because it in-
creases coronary blood flow and reduces myocardial 
depression during sepsis.  However, an excessively up-
regulated vascular KATP channel will cause severe pe-
ripheral vasodilation leading to lethal hypotension and 
organ failure. The two contradictory effects of the KATP 
channel on coronary and systemic circulations hinder 
the administration of KATP channel blockers and open-
ers in sepsis in which both the reasonable controls of 
systemic vascular contractility and the maintenance of 
coronary circulation are necessary. All of these depend 
on the understanding of the molecular mechanisms un-
derlying the vascular KATP channel regulation.
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