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Abstract: The process of human embryo implantation is mediated not only by evolutionarily conserved mechanisms, but also by a 
mechanism unique to humans. Evidence suggests that the cell adhesion molecules, L-selectin and trophinin, play a unique role in hu-
man embryo implantation. Here, we describe the dual roles of mucin carbohydrate ligand for L-selectin and trophinin protein and of 
the trophinin-associated proteins bystin and tastin. We then describe trophinin-mediated signal transduction in trophectoderm cells and 
endometrial epithelial cells. This review also covers cadherin and integrin in human embryo implantation.
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摘  要：人类胚胎植入过程不仅受到在进化上保守的机制调节，而且也受到人类一种独有的机制调节。有证据显示，细胞黏

附分子L-选择蛋白和trophinin在人类胚胎植入过程扮演独特的角色。在本文中，我们描述了L-选择素和trophinin的黏蛋白糖

配体的双重作用，也描述了trophinin相关蛋白bystin和tastin的双重作用。我们随后描述了滋养外胚层细胞和子宫内膜上皮细

胞中由trophinin调节的信号转导。本综述也涵盖了钙依粘连蛋白和整合素在人类胚胎植入过程中的作用。
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1  Introduction

Embryo implantation is a unique form of mammalian 
reproduction. However, studies of embryo implantation 
in a variety of mammals have revealed that the process 
varies significantly among different mammalian species [1]. 
Mechanisms underlying human embryo implantation 
are considered unique to humans, an observation closely 
linked to the high incidence of ectopic pregnancy seen 
in humans but extremely rare in non-human primates 
and nonexistent in rodents [2]. Initial step of embryo im-
plantation is feto-maternal interaction and cell adhesion 
of trophectoderm of blastocyst and endometrial luminal 
epithelial cells of uterus, at their respective apical cell 

surfaces. This occurs despite generally the non-adher-
ent nature of apical cell surfaces of epithelial cells. 
Thus embryo implantation was characterized as cell 
biological paradox [3]. This minireview describes mole-
cules involved in apical cell adhesion of trophectoderm 
and endometrial epithelia, focusing on the roles of mu-
cins, L-selectin, trophinin, cadherin and integrin, in hu-
man embryo implantation.

2  Mucins

Apical cell surfaces of epithelia contain numerous mi-
crovilli, which are covered by thick layer of mucin car-
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bohydrate called the glycocalyx. The glycocalyx lubri-
cates and hydrates cell surfaces as well as protects 
epithelial cells from microorganisms and degradative 
enzymes. In addition, mucins inhibit both cell-cell and 
cell-extracellular matrix interactions. The apical surface 
of human luminal and glandular uterine epithelia are 
covered by abundantly expressed MUC1 and other mu-
cins [4, 5]. 

MUC1 is a type 1 membrane protein composed of a 
large N-terminal extracellular domain, a transmem-
brane domain, and a short C-terminal cytoplasmic do-
main [6] (Fig. 1A). The MUC1 cytoplasmic domain as-
sociates with signaling molecules including β-catenin 
and Grb2/Sos, suggesting a potential role for MUC1 in 
cell signaling [7]. Activation of receptor tyrosine kinase 
ErbB1 by EGF induces tyrosine phosphorylation of the 
MUC1 cytoplasmic tail and activation of ERK1/2. Di-
rect interactions between the MUC1 ectodomain and a 
carbohydrate-binding protein may also trigger signal-
ing reactions [8, 9]. Thus, stimuli such as growth factors 
or cytokines may affect MUC1 stability, localization 
and phosphorylation directly or through activation of 
MUC-1 associated membrane proteins. 

MUC1 expression in endometrial epithelial cells is 

regulated at the transcriptional level by steroid hor-
mones and other factors [10]. In the mouse, rat, and pig, 
Muc1 is down-regulated in the entire uterus prior to 
embryo implantation [11], consistent with the idea that 
the glycocalyx made by mucins inhibits cell adhesion 
and therefore needs to be down-regulated before blas-
tocysts can adhere to the uterine epithelium. In the rab-
bit, although Muc1 expression in the entire uterus is el-
evated during the peri-implantation period, Muc1 is 
down-regulated at embryo implantation sites in vivo 
and in vitro [12]. In the human endometrium, MUC1 is 
significantly elevated in the early secretory phase or 
implantation window [13]. Although MUC1 has not been 
studied at the embryo implantation site in humans in 
vivo, in vitro implantation models indicate that MUC1 
is down-regulated at the site of embryo attachment in 
humans as well [14]. This suggests that one or more fac-
tors expressed on or released from the to be implanted 
blastocyst triggers signals for down-regulation of 
MUC1 from the adjacent endometrial epithelia in hu-
mans. Although the major function of MUC1 in human 
endometrial epithelia before and during implantation is 
to prevent the blastocyst from adhering to endometrium 
to wrong place, carbohydrate moiety of MUC1 ex-

Fig. 1. Mucin and L-selectin ligand. MUC1, one of mucin glycoproteins, is a transmembrane protein, of which extracellular domain 
contains numerous carbohydrate chains (A). Some MUC1 carbohydrate in human endometrial epithelial cells contains sulfated and 
fucosylated oligosaccharide structure shown, which is specifically recognized by L-selectin (B). 
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pressed on the very spot for implantation expresses L-
selectin ligand structure (Fig. 1B). As described below, 
L-selectin and L-selectin ligand play an important role 
in human blastocyst implantation. 

3  L-selectin 

Selectins are a group of carbohydrate binding pro-
teins. In both human and mouse, three selectin genes 
exist and their products known as E-selectin, P-selec-
tin, and L-selectin are expressed in hematopoietic 
cells; i. e., leukocytes and endothelial cells. E-selectin 
is expressed on the endothelial surface during inflam-
mation, P-selectin is expressed on the activated plate-
let, and L-selectin is constitutively expressed on the 
lymphocytes [15–17]. 

Although previously it was thought that selectins are 
expressed only in the hematopoietic cells, L-selectin 
was found on the surface of human blastocysts [18]. Fur-
thermore, L-selectin ligand oligosaccharides can be 
detected by antibodies as MECA79 and HECA452 an-
tigens [19, 20] (Fig. 1B). These antigens were detected by 
immunohistochemistry on luminal and glandular endo-
metrial epithelia in the human uterus [18, 21, 22]. MECA79 
antigen is carried by MUC1 in human endometrial [23]. 
It has been suggested that interactions between L-selec-
tin on human blastocysts and oligosaccharide ligands 
on endometrial epithelia enable an interaction of human 
embryo to endometrium for implantation [18] (Fig. 2). 

L-selectin expressed on leukocytes interacts with 
their carbohydrate-ligands on the blood vessel endothe-
lial cells. This interaction allows the rolling of leuko-
cytes on vascular endothelium prior to their firm adhe-
sion for extravasation [17, 24]. A parallel was made between 
the leukocyte rolling on vascular wall and the blastocyst 
apposition to the endometrial epithelium [18, 25]. Nonethe-
less, given the enormous difference in size between a 
human blastocyst (diameter, 115–265 µm) [26] and lym-
phocyte (diameter, 10 µm), it may be difficult for a 
blastocyst being immobilized to endometrial epithelia 
solely through L-selectin and L-selectin ligand, as the 
force of such interaction is weak [27]. It seems reason-
able to speculate that a human blastocyst rolls over the 
glycocalyx of the endometrial epithelium through weak 
interactions with L-selectin. L-selectin-mediated roll-
ing may allow cross-talk between the blastocyst and 
maternal epithelia, leading to stronger cell adhesion by 
direct binding between the components embedded in 
the plasma membranes on the fetal and maternal sides. 

Fig. 2. Steps of human embryo implantation. A: A human blas-
tocyst and endometrial epithelia covered by glycocalyx (shown 
by blue hairs) are shown. Some glycocalyx contains L-selectin 
ligand structure (dark blue). Blastocyst expressing L-selectin 
on its surface rolls over on glycocalyx with L-selectin-ligand 
structure. B: Endometrial epithelial cells underneath the blas-
tocyst loose glycocalyx and develop pinopodes. Since both 
trophectoderm cells and pinopodes contain trophinin, this allows 
homophilic cell adhesion by trophinin-trophinin binding. C: Tro-
phectoderm cells stimulated by trophinin-mediated cell adhesion 
invade maternal cells. By contrast, maternal epithelia undergo 
apoptosis and accept trophoblast invasion. 
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The rolling may ensure for the blastocyst to settle in the 
proper spot in the uterus and in the correct orientation [28].

A microarray analysis of mouse blastocysts showed 
an elevation of L-selectin transcripts during the matura-
tion stage, when the blastocysts are competent for im-
plantation [29]. However, mutant mice deficient in the L-
selectin gene show no defect in implantation [30], and 
mutant mice lacking fucosyltransferase and sulfotrans-
ferase required for synthesizing L-selectin ligand did 
not show a sign for reproduction failure [31–34]. Further-
more, the MECA79 antigen was not detected in mouse 
endometrial epithelial cells [18], suggesting that L-selec-
tin plays a role in human, but not mouse, embryo im-
plantation.  

4  Trophinin

Trophinin was identified by expression cDNA cloning 
from cDNA library constructed from human embryonal 
carcinoma (EC) cell line HT-H [35, 36]. ECs are tumors 
composed of undifferentiated embryonic stem (ES) 
cells and variously differentiated cell types [37, 38]. Both 

human and mouse ECs show characteristics of early 
embryonic cells [37, 39, 40]. While undifferentiated mouse 
EC cells express SSEA1 (stage specific embryonic an-
tigen 1) antigen as those ES cells of the blastocyst do [41], 
human EC cells express SSEA3 and SSEA4 antigens 
as cells earlier than those in blastocyst stage [42, 43]. 
Mouse EC cells have the tendency to differentiate into 
endoderm [44], whereas human EC cells have the ten-
dency to differentiate into trophoblastic cells [40]. Tro-
phoblastic EC cells are thought to represent those at 
early embryonic stage, as such in trophectoderm of the 
blastocyst. 

HT-H cells spontaneously differentiate into syncy-
tiotrophoblast-like cells in vitro and secrete trophoblast 
marker hCG [35]. Trophoblastic HT-H cells adhere and 
grow as a monolayer on tissue culture dishes. When 
HT-H cells are detached by trypsinization and added to 
human endometrial adenocarcinoma SNG-M cells, they 
instantly adhere to SNG-M cells [36]. HT-H cells also 
adhere to themselves but do not adhere to epithelial 
cells derived from other cell types, such as colon and 
lung. These observations suggest the existence of a tro-

Fig. 3. Structure of human trophinin protein. A: Peptide sequence of human trophinin. Majority of the peptide is made of decapeptide 
repeats. B: Proposed topology of trophinin protein, with decapeptide repeats as outer cellular and N-terminal region in the cytoplasm. 
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phoblast/endometrial cell-specific apical cell adhesion 
molecule in HT-H and SNG-M cells. 

To identify this trophoblast-endometrial cell type 
specific apical adhesion molecule, we employed ex-
pression cDNA cloning. Based solely on the apical cell 
adhesion activity, we have identified trophinin [36, 45]. 
Human trophinin is composed of hydrophilic N-termi-
nal domain followed by the repeats (Fig. 3A). Although 
trophinin does not have a leader peptide characteristic 
of conventional plasma membrane proteins processed 
via the sorting pathway, experimental evidence indi-
cates that trophinin is an intrinsic membrane protein [36, 46]. 
Although the existence of several hydrophobic domains 
in decapeptide repeats initially suggested that this pro-
tein traverses the lipid bilayer multiple times [36], a more 
plausible possibility is that the trophinin protein is a 
single transmembrane protein utilizing the first hydro-
phobic decapeptide repeats near the N-terminus to span 
the membrane (Fig. 3B). The remaining C-terminal de-
capeptide repeats may be extracellular. 

Unlike many cell adhesion molecules requiring calci-
um for adhesion, adhesion by trophinin is independent 
of divalent cations [36]. Trophinins bind each other when 
they are presented in trans at the respective apical cell 
surface. Other well-characterized homophilic cell adhe-
sion molecules, such as cadherins, also bind one another 
in trans at respective lateral surfaces [47]. A monoclonal 
antibody specific to human trophinin showed positive 
immunostaining in both trophoblast and maternal epi-
thelia at embryo implantation sites in the human pla-
centa [48]. 

In trophoblastic cells, the trophinin cytoplasmic do-
main binds to a cytoplasmic protein, bystin, which fur-
ther binds to tastin and cytokeratin [45, 49]. When trophi-
nin complexed with these cytoplasmic proteins in the 
cytoplasm, extracellular domain of trophinin can func-
tion as cell adhesion molecule [36, 45, 49]. 

In humans, trophinin gene is mapped to the short arm 
of X chromosome [50]. This region of X chromosome is 
closely linked to the evolution of mammal: genes en-
coded in this region in one placental mammals are likely 
located on the X chromosome in other mammals due to 
dosage compensation [51, 52]. Indeed, trophinin gene has 
been mapped to X chromosome in mouse [53], sheep [54], 
and bovine [55, 56]. Genes encoded in these region are au-
tosomal in marsupials and monotremes [57], animals that 
do not undertake proper implantation. 

During ectopic pregnancies, the condition unique to 
humans [58], trophinin was strongly expressed at the im-

plantation site in both fetal and maternal cells: i. e., tro-
phinin was expressed by the trophoblast in the chorion-
ic villi and also by the maternal epithelia adjacent to 
the chorionic villi [2]. However, the epithelia at a slight 
distance (5 mm) from the implantation site showed no 
trophinin. Therefore, it appeared that expression of tro-
phinin by maternal cells is induced by implanting em-
bryo. One of the inducers may be human chorionic go-
nadotropin β-chain (CGβ), as transcription of the TRO 
gene in the fallopian tubal explant was induced by 
hCGβ [2]. Furthermore, CGβ together with IL-1β in-
duced strong trophinin expression in human endometrial 
epithelial cells [59]. Interestingly, trophinin was found in 
the pinopodes [60, 61], tall protrusions presented above 
the glycocalyx, found in the implantation sites. Pinopo-
des containing trophinin were induced by CGβ and 
IL1β [59] (Fig. 4). Cell adhesion molecules expressed on 
the surface of the pinopode should allow direct interac-
tion of trophectoderm cells of blastocysts. Trophinin, 
which binds to each other with strong affinity is a good 

Fig. 4. Immunoelectron micrograph of pinopode developed by 
human endometrial epithelial cell treated by hCG. A pinopode 
(P) and the neighboring ciliated area with the lateral junctional 
complex (arrowheads) stained for trophinin by gold particles. 
Modified from Sugihara et al [59].
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candidate for this function. 
It is also possible that the strong cell adhesion in em-

bryo implantation requires multiple adhesion machiner-
ies. In the mouse, ErbB4 and HB-EGF play the major 
role in the initial adhesion in embryo implantation [62]. 
Expression pattern of ErbB4 in human trophectoderm 
cells and HB-EGF in human endometrial epithelial 
cells support the involvement of these molecules in hu-
man embryo implantation [63, 64]. While, gene knockout 
mouse experiments for trophinin [53] and L-selectin [30] 
and its ligand carbohydrates [32, 33, 65–68] indicate that nei-
ther trophinin nor L-selectin plays an essential role in 
embryo implantation in the mouse, HB-EGF gene 
knockout mouse showed a failure in embryo implanta-
tion [69]. The evidence collectively suggests that func-
tions of L-selectin and trophinin are acquired uniquely 
to human embryo implantation as additional mecha-
nisms to ErbB4/HB-EGF. An integrated view of L-se-
lectin and trophinin has been proposed [70] (Fig. 2A, B). 

Morphological observations of human embryo im-
plantation sites indicate that trophectoderm cells of the 
blastocyst adhered to the uterus proliferate and invade, 
whereas trophectoderm not in contact with the uterine 
epithelium remains a monolayer [48, 71, 72]. This finding 
suggests that the initial adhesion triggers activation of 

cells in trophectoderm for proliferation and invasion. 
By contrast, epithelial cells in contact with the blasto-
cyst underwent apoptosis and disappeared [73–75] (Fig. 
2C). It is known that trophoblastic cells express FAS 
ligand (FASL) and endometrial epithelial cells express 
FAS [76]. Therefore, trophectoderm adhesion to endome-
tria epithelia may induce apoptosis by FAS/FASL path-
way. 

Trophinin-mediated adhesion on the cell surface of 
trophoblastic cells triggers EGF-mediated cell activa-
tion [46, 77, 78], whereas it triggers an apoptotic signal in 
maternal cells [79, 80] (Fig. 5). Therefore, trophinin is a 
dual signaling molecule: in embryonic cells it promotes 
proliferation and invasion, while in maternal cells it 
promotes cell death in order to accept invading embryo. 

5  E-cadherin

E-cadherin is located in the adherens junctions on 
the lateral side of the plasma membrane of epithelial 
cells [69,70]. Ultrastructure of human embryo implanta-
tion revealed a formation of adherent junction, desmo-
some-like structure, between originally the apical cell 
surface of trophectoderm cells and endometrial epithe-
lial cells [81]. When trophoblastic HT-H cells were added 

Fig. 5. Signals triggered by trophinin-mediated cell adhesion in trophectoderm cells and endometrial epithelial cells. In trophoblastic 
cells, ErbB4 (receptor tyrosine kinase) is arrested by bystin/trophinin complex. When trophinin-mediated cell adhesion takes place, 
ErbB4 is released from bystin. This allows ErbB4 to be activated by phosphorylation. In endometrial epithelial cells, trophinin-medi-
ated cell adhesion releases PKCδ from trophinin. PKCδ is then translocated to the nucleus, where it activates caspase 3 for apoptosis.
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to endometrial epithelial SNG-M cells, adherent junc-
tions were developed between these cell types [36, 45] 
(Fig. 6) Because adherent junctions and desmosomes 
are characteristically formed at the lateral junctions be-
tween two epithelial cells [82, 83], such observations sug-
gested that these epithelial cells changed their polarity 
after initial apical cell adhesion. 

Intracellular calcium concentrations affect epithelial 
cell adhesiveness and polarity by triggering redistribu-
tion of cell adhesion molecules [84]. In vitro experiments 

on cultured endometrial adenocarcinoma Ishikawa cells 
demonstrated that a transient rise in intracellular calci-
um, triggered by calcitonin, suppresses E-cadherin ex-
pression at cellular contact sites [85]. Interestingly, calci-
tonin, a potential regulator and biomarker of endome-
trial receptivity [86, 87], is induced by progesterone in the 
human endometrial epithelium specifically during the 
mid-secretory phase of the menstrual cycle [88]. Proges-
terone could regulate E-cadherin, probably via endo-
metrial calcitonin induction leading to increased intrac-
ellular calcium. Thus, it is possible that E-cadherin 
expression at the lateral cell surface is required to 
maintain the polarity of endometrial epithelial cells, 
whereas E-cadherin may be down-regulated to enable 
epithelial cells dissociation to accept blastocyst inva-
sion. The up-regulation of E-cadherin and catenin in 
the epithelial cells of peri-implantation uteri and the 
down-regulation of cadherin, catenin and calcium ion 
in invasive trophoblast appear to be associated with 
embryo-uterine interactions during early pregnancy [89]. 

6  Integrins

Integrins are a family of heterodimeric transmembrane 
glycoproteins, formed by the association of two, non-
covalently linked α and β subunits, and are expressed 
on the basal cell surface to adhere to extracellular ma-
trix through tripeptide arginine-glycine-aspartic acid 
(RGD) sequence [90, 91]. These subunits contain extracel-
lular, transmembrane and cytoplasmic domains. The 
extracellular domain enables integrins to function as a 
receptor to extracellular matrix. The cytoplasmic do-
main interacts with the cytoskeleton and other cyto-
plasmic proteins.

In human endometrium, expression pattern of integ-
rins is correlated to fertility and implantation [92–94]. 
While the majority of the integrins are constitutively 
expressed throughout the entire menstrual cycle, some 
integrins exhibit expression patterns dependent on hor-
monal cycle, and integrins whose expression is in-
creased in the mid-luteal phase were proposed as mark-
ers for the frame of the window of implantation [95, 96]. 
αvβ3 integrin as well as its ligand osteopontin was de-
tected by immunohistochemistry on the endometrial lu-
minal epithelial surface, which may interact with the 
trophoblast [97]. The cycle-specific expression pattern of 
endometrial integrin is suggestive of hormonal regula-
tion. Indeed, αvβ3 integrin expression is orchestrated in 
the human endometrium both by positive and negative 

Fig. 6. Adherent junctions formed between trophectoderm cells 
and endometrial epithelial cells. Electron micrographs of HT-H 
cultured on SNG-M for 6 hours (A, scale bar, 1 µm), for 20 
hours (B, scale bar, 1 µm) and 7 days (C, scale bar, 0.5 µm). 
Note that adherent junctions and desmosomes are developed 
between these two cell types at originally the apical cell surfaces 
(arrows). Modified from Fukuda et al.[36] and Aoki et al[107].
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factors [98]. Both estrogen and progesterone are thought 
to act as paracrine stromal factors to induce epithelial 
β3 integrin expression that serves as the rate-limiting 
step in αvβ3 formation [99]. In addition, signalling 
through αvβ3 has been reported to be important to 
maintain a balance between cell proliferation and apop-
tosis, along with the modulation of inflammatory re-
sponses of decidual cells [100]. Although αvβ3 was found 
in the pinopodes, later studies in infertile women re-
vealed this marker serves poorly for dating the recep-
tive phase for implantation [101, 102]. 

7  Perspective

Analysis of human embryo implantation at molecular 
level is a challenging task, as this process includes a 
mechanism unique to humans. Availability of large 
number of human embryos from in vitro fertilization 
and human ES cell lines allowed gene microarray anal-
yses, which are providing unprecedented amount of 
data [103, 104]. As human ES cells differentiate into tro-
phoblastic cells in vitro [105, 106], analysis of embryo im-
plantation can be achieved using ES cell-derived in vit-
ro culture system in the future. 
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