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New tricks for an old slug: Descending serotonergic system in pain
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Abstract: A large body of research including animal and human studies has confirmed the crucial role of the serotonin (5-HT) system 
in the regulation of nociception and chronic pain-related behaviors. in recent years, the functional status of the 5-hT system in de-
scending inhibition and facilitation of spinal nociceptive processing has been reevaluated by novel genetic manipulation techniques 
and selective agents for 5-hT receptor subtypes. Although these studies shed more light on several aspects of descending 5-hT and 
spinal 5-HT receptors functioning in descending modulation in pain perception, the current knowledge about the specific role of de-
scending 5-hT system in the induction and maintenance of persistent pain remains fragmentary. in this paper, we review the available 
data from recent studies of the inhibitory or facilitatory influence from descending 5-HT-spinal 5-HT receptor system in acute and per-
sistent pain, attempt to dissect the involvement of this signaling pathway in neural circuits of maintenance of persistent pain and dis-
cuss some issues that need to be considered for further pain research.  
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古曲新韵：下行性5-羟色胺系统在疼痛机制中的作用
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摘  要：大量临床和基础的研究提示5-羟色胺(5-hT)系统参与了生理痛觉的调节和慢性痛的机理。近来，随着全新的基因调

控技术和药理上特异性5-hT受体亚型试剂的应用，人们对5-hT系统在脑干下行痛觉抑制和易化机理中的功能又有新的认

识。尽管这些研究揭示了下行性5-hT传导及其脊髓内受体在痛觉调制的新功能，但5-hT系统在慢性痛的形成和维持等方面

的作用仍了解甚少。本文回顾了近年来在此领域已取得的进展，力图更新我们对这一经典神经递质和相关受体信号系统及

其可塑性变化在慢性痛机理中的认识，进而引导我们寻求新的战略来发展有效的临床抗慢性痛药。
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Review

As one of the most ancient biogenic amine or signaling 
molecules, serotonin (5-hydroxytryptamine or 5-hT) is 
early found within gastrointestinal tract and blood 
platelets and has been implicated in a large variety of 
physiological or behavioral functions from autonomic 
activity to cardiovascular regulation [1]. Only later is it 
found in the central nervous system and influences neu-
ronal activity as a neurotransmitter via distinct 5-hT 
receptors, involving in tremendously important brain 

functions including emotional behavior and perception 
of pain [2]. Although 5-hT-containing neurons are clus-
tered in the exact midline of the brainstem termed the 
raphe nuclei and only occupy 1%–2% of the whole 
body 5-hT in mammalian brain, its ascending and de-
scending fibers are vastly distributed throughout the 
brain and spinal cord, respectively. 5-hT’s diverse ef-
fects are dependent on pharmacologically and function-
ally distinct 5-HT receptor subtypes classified to seven 
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families termed 5-hT1 through 5-hT7, the cell types 
expressing these receptors, and the integration of 5-hT 
and its receptor interactions from the respective local 
circuitry. An extensive literature has shown that altered 
ascending 5-hT system in the cortical cortex plays a 
critical role in the pathogenesis of some psychiatric 
diseases, particularly in depression, anxiety and schizo-
phrenia [3]. Most effective drugs such as antidepressants 
and antipsychotics are thought to influence the 5-hT 
signaling in the brain. Meanwhile, there have been nu-
merous progresses shedding light on the function of 
descending 5-hT system in the modulation of spinal 
nociceptive processing and behavioral hypersensitivity 
after tissue and nerve injury. This review focuses on re-
cent evidence in research with the rapid advances in 
modern molecular, genomic and pharmacological tech-
niques for the favorable involvement of descending 
5-hT and spinal dorsal horn 5-hT receptor subtypes in 
the maintenance of persistent pain in animal models. 
The implication of these studies in understanding the 
molecular and cellular mechanisms of chronic pain and 
a potential of certain 5-hT receptor subtypes to become 
targets of newly developed anti-pain drugs with more 
properties will be discussed. 

This review is a tribute to Sir hsiang-Tung Chang 
who left us on November 4, 2007 and to the special is-
sue in memory of hsiang-Tung Chang. For those who 
worked with him as a former member of the Shanghai 
Brain Research institute and were his students, he was 
a great scientific personality and the Godfather of the 
neuroscience and pain research in China. 

1  Bidirectional modulation of endogenous 
descending pain circuits 

individual pain sensation is naturally variable, depen-
dent on subjective experiences except for injury or 
stimulating intensity. Base on accumulating studies in 
last three decades, it has been recognized that differ-
ence in pain perception may partially depend on the ex-
istence of the endogenous pain modulatory systems in 
the brain [4]. Earlier work was conducted by Melzack 
and Wall [5] who proposed “gate-control theory” as a 
model of pain modulatory mechanisms, suggesting that 
the spinal and medullary dorsal horn receives inputs 
from both primary nociceptive afferents and local in-
hibitory neurons and thus plays a critical role in the 
modulation of pain. in 1964, Tsou and Jang [6] were the 

first to report that the periaqueductal gray (PAG) of 
midbrain mediated morphine analgesia in animal. Five 
years later, local electrical stimulation at the ventrolat-
eral parts of the PAG in midbrain was found to produce 
anesthesia-like action for gut surgery of rat [7] and to re-
lieve intractable pain in human [8], which soon resulted 
in identification of endogenous opioidergic inhibitory 
system including opioid peptides and their binding sites 
in this region [8–10] and its inhibitory action on spinal 
nociceptive processing [11]. in addition, blockade of 
neuronal activity with microinjection of local anesthet-
ic agent lidocaine into the rostroventral medulla 
(RVM), a medullary reticular area composed by medial 
nucleus raphe magnus (NRM) and adjacent nucleus re-
ticularis gigantocellularis pars alpha (NGCα), eliminat-
ed PAG-evoked antinociception. Also, electrical stimu-
lation or microinjection of morphine in the RVM 
similarly induces analgesia in rats [12]. As a consequence 
of electrophysiological, pharmacological and anatomi-
cal studies on the structure and function of the RVM, it 
was identified that the RVM receives signal inputs from 
PAG neurons including opioidergic projection [13] and is 
likely to be the final relay in supraspinal influences on 
spinal nociceptive processing by its descending projec-
tions to the spinal dorsal horn [14]. Following these pio-
neering studies, the concept of descending pain inhibi-
tion was established as important to endogenous pain 
modulation in the 1980s [15]. it has been accepted that 
endogenous pain modulatory system exists in the form 
of a descending inhibitory pathway from PAG-RVM 
circuit to the spinal and medullary dorsal horn, integrat-
ing feedback from multiple forebrain areas such as the 
anterior cingulated cortex, the prefrontal cortex, the in-
sular cortex and the amygdala [4, 16, 17]. This mechanism 
has been also considered as an important mechanisms 
underlying contribution of cognitive or emotional influ-
ence to change of pain experiences [17]. 

When descending modulatory pathway is well docu-
mented as sources of endogenous inhibitory control for 
opioid- or stress-mediated analgesia, a serial of electro-
physiological studies conducted by Fields and col-
leagues further facilitated understanding the landscape 
of descending pain circuitry from the RVM to the spi-
nal dorsal horn [17]. They examined neuronal fire pat-
terns in the RVM paired with the tail-flick, a behavioral 
nocifensive response to noxious thermal stimulus in 
lightly anesthetized animals and found that two distinct 
groups of RVM neurons rapidly exhibited different 
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changes in state activity just prior to the initiation of 
the nocifensive withdrawal: ON-cells increased a peri-
od of firing and OFF-cells decreased firing [18]. The re-
maining neurons that failed to correlate with nocicep-
tive stimuli were classified as Neutral-cells. The 
classifying populations of RVM neurons have been re-
peatedly confirmed by the distinct pharmacological and 
neurochemical profiles [19–21]. Both ON- and OFF- cells 
were found to project to the spinal dorsal horn [20]. 
Growing evidence supports that the activation of OFF-
cells functionally drive descending anti-nociceptive 
force [22], beginning to lay the ground for a cellular un-
derstanding of descending inhibitory modulation. 
Meanwhile, although there is some controversy about 
the function of the ON-cells [23, 24], it appears that both 
reduced activity of OFF-cells and hyperexcitation of 
ON-cells may exert descending net facilitatory influ-
ences that contribute to behavioral hyperalgesia after 
injury [17, 22], which is consistent with recent apprecia-
tion that there is endogenous descending facilitation 
from the PAG-RVM circuit [25] as mentioned below. in 
fact, validity of functionally distinct population of 
RVM neurons has been paralleled by the increased re-
ports of bidirectional descending pain modulation. 

Gebhart and colleagues on the first time described bi-
directional pain modulation of spinal nociceptive pro-
cessing from the RVM in early 1990s [26, 27]. Electrical 
stimulation or administration of glutamate in the RVM 
induced intensity- or dose-dependent suppression or en-
hancement of nociceptive responses in spinal neurons 
and behavioral pain withdrawals, suggesting existence of 
descending facilitation on nociception [28]. Lesion or gen-
eral inactivation of RVM neurons was found to attenuate 
the maintenance of behavioral hyperalgesia induced by 
tissue or nerve injury, indicating that active descending 
facilitation is involved in persistent pain [29–31]. Focal ap-
plication of cholecystokinin, BDNF and proinflamma-
tory cytokines into the RVM results in thermal hyperal-
gesia [32–34]. Therefore, growing evidence has established 
the presence of endogenous descending pain facilita-
tion, overlapping with descending inhibitory influences 
to balance spinal nociceptive modulation and actively 
involve state-dependent nocifensive behaviors after in-
jury [16, 25, 28, 35–37]. it should be addressed that descending 
facilitation as an endogenous pain modulatory mecha-
nism provides a biological protective machinery to 
avoid noxious injury during acute pain states, however 
long-lasting switch from descending inhibition to facil-

itation pathologically contributes to maintenance of per-
sistent hyperalgesia and allodynia after tissue and nerve 
injury. Therefore, translating novel strategies from 
bench to bedside targeting enhanced descending facili-
tation will potentially benefit for chronic pain therapy.

2  Bidirectional modulation of descending se-
rotonergic pathway 

The increasing appreciation of the RVM-spinal circuit 
as the final descending pathway mediating bidirectional 
modulation of nociception and behavioral pain respons-
es has led to the question of its nature of neurochemis-
try. Neuroanatomical studies reported existence of 
many neurotransmitters such as 5-hT or GABA and a 
variety of receptors in RVM neurons projecting to the 
spinal dorsal horn and presumed to be involved in de-
scending net nociceptive modulation [37]. For example, 
Electrophysiological evidence indicated that inhibitory 
GABAergic or glycinergic neurons and mu-opioid re-
ceptor (MOR)-expressing neurons in the RVM and 
their descending projections mediate descending inhi-
bition on spinal pain transmission. Although more than 
one third of descending projections from the RVM are 
serotonergic [38], interpreting the role of descending 
5-hT in pain modulation proves more challenging due 
to its distribution in physiologically identified Neutral-
cells [39], its anatomical relationship with other mole-
cules in the same cells [37], and the diversity of subtypes 
of the 5-hT receptors in the spinal and medullary dor-
sal horn [37, 40]. in recent years, the development of se-
lectively pharmacological tools and genetic manipula-
tion has largely enriched to understand cellular and 
molecular mechanisms of descending pain modulatory 
system, in which the important advantage studied is the 
bidirectional pain modulation of descending 5-hT sys-
tem, depending on the functional context. 

The existence of 5-HT in the brain was first demon-
strated in 1953 [41], and majority of 5-hT-containing 
neurons was mapped in midline raphe nuclei of the 
brainstem [42]. in mammalian, it is well accepted that 
the largest aggregate of 5-hT-containing neurons in-
volving in spinal nociceptive modulation are principal-
ly located in the RVM and their descending 5-HT fibers 
form a bulbospinal tract that descends in the dorsolater-
al funiculi (DLF) of spinal cord and predominately ter-
minates in the spinal dorsal horn [43]. in contrast, 5-hT-
containing neurons in midbrain raphe nuclei, mainly 
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the dorsal and, to a lesser extent, the medial raphe nu-
clei, provide a diffuse ascending projection to limbic 
forebrain regions and are important in regulating ho-
meostatic functions and are implicated in the etiology 
and treatment of mood disorders and schizophrenia [44]. 
Although there are bidirectional projections from some 
5-hT-containing neurons in the dorsal raphe nuclei and 
other reticular structures, new evidence suggested that 
the ascending or descending projections of raphe 5-hT 
neurons are guided by permissive transcript factors en-
coding homeodomain hmx+ or hox+ in 5-hT neurons, 
respectively, during neuronal development [45]. The ho-
meostatic effect of these transcript factors on function 
of descending 5-HT fibers in adult and their role in pain 
perception remain to be further examined. 

Early evidence suggested that spinal 5-hT release 
contributes to descending pain inhibition [15]. Besson’s 
group was the first to report that analgesia induced by 
electrical stimulation of the RVM was accompanied 
with 5-hT release in spinal cord [46, 47]. Willis and col-
leagues further found that chemical stimulation of the 
PAG also induced spinal 5-hT release, along with an 
obvious analgesia [48]. intrathecal administration of 5-hT 
itself evoked antinociception in acute noxious stimula-
tion [49, 50], whereas spinal blockade of 5-hT functions 
attenuated analgesia induced by intra-RVM electrical 
stimulation or microinjection of morphine [46, 51, 52]. Fur-
thermore, selective lesion of 5-hT-containing neurons 
with microinject ion of  neurotoxin 5,  7-dihy-
droxytryptamine (5,7-DhT) into the RVM or disruption 
of the DLF resulted in thermal hyperalgesia [53, 54] or en-
hanced inflammatory pain states [33]. in addition, Lmx1b 
knockout mice with selective lack of brainstem 5-hT 
neurons exhibited an amplified behavioral hypersensi-
tivity during acute inflammatory pain [55]. Together, 
these findings indicate the involvement of active 5-HT 
neurons in tonic descending inhibition of acute pain 
and the development of inflammatory pain. It is impor-
tant to note that multiple neurotransmitter systems have 
been found to coexist and several functional receptors 
express in RVM 5-hT-containing neurons [37]. Thus, it 
is not clear whether the enhanced nociception after de-
letion of RVM 5-hT-containing neurons or spinal 
5-HT-containing fibers is due to the loss of 5-HT action 
at spinal sites or to the loss of other coexisting inhibito-
ry neurotransmitters, or even to the loss of the integrat-
ed effects from multiple receptors expressed in 5-hT-
containing neurons. interestingly, electrophysiological 

data indicated that 5-hT-containing neurons in the 
RVM are neither OFF-cells nor ON-cells [56] and may 
partially belong to Neutral-cells [39, 57]. however, func-
tional MOR expression was mainly found in ON-cells 
in the RVM [17, 58], whereas nearly half of the spinal pro-
jecting 5-hT-containing neurons have been shown to 
express MOR [59] or to be sensitive to MOR agonists [38]. 
it seems that at least some descending MOR-expressing 
ON-cells use 5-hT as a neurotransmitter [60]. Selective 
chemical deletion of MOR-containing neurons in the 
RVM was found to attenuate maintenance of neuro-
pathic pain [61]. The selective deletion of MOR-contain-
ing ON-cells in the RVM would then reduce descend-
ing serotonergic influences. In fact, selective lesion of 
spinal 5-HT fibers by 5,7-DHT was also reported to re-
duce central sensitization and attenuates mechanical al-
lodynia after tissue and nerve injury but not thermal 
hyperalgesia after inflammation [62, 63], suggesting that 
descending 5-hT pathways may contribute to facili-
tatory influence on neuronal excitability in the spinal 
dorsal horn and behavioral hypersensitivity during the 
development of persistent pain, especially neuropathic 
pain [40,64]. Given the controversial results in these stud-
ies and integrated impairment of descending 5-hT-con-
taining neurons or fibers, the role of descending 5-HT 
but not 5-hT-containing neurons in the development of 
thermal and mechanical hypersensitivity after inflam-
mation and nerve injury requires reevaluation. Utilizing 
combined regional gene targeting with Tph-2 RNA in-
terference to selectively deplete 5-hT from RVM neu-
rons and descending 5-hT-containing axon terminals in 
the spinal dorsal horn, a new study demonstrated that 
the RVM 5-hT itself was not involved in tonic descend-
ing inhibition and intra-RVM opioid-induced analgesia 
in acute pain [65]. Importantly, this study identified that 
the RVM 5-hT system participated in enhanced de-
scending pain facilitation, which was necessary for 
maintenance but not induction of hyperalgesia and allo-
dynia after inflammation and nerve injury [65]. Thus, 
some previous results do not demonstrate the integrated 
effects of 5-hT function in spinal pain processing and 
modulation because they do not reflect the unique ef-
fects of the descending neurotransmitter 5-hT itself. 
Although 5-hT-containing neurons in the RVM are in-
volved in descending inhibition in acute pain and in-
flammatory pain but in descending facilitation in neu-
ropathic pain, descending 5-hT signaling itself may be 
predominately implicated in supraspinal mechanisms 
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underlying the maintenance of central sensitization and 
behavioral hypersensitivity after tissue and nerve injury. 
it is hypothesized that unique functional and structural 
plasticity of both descending 5-hT-containing neurons 
and possible spinal 5-hT receptor subtypes may be  
responsible for a switch in the balance of RVM 5-hT 
function resulting in enhanced descending facilitation 
during the development of persistent pain. 

3  Bidirectional modulation of spinal seroton-
ergic receptors 

it is clear that whether 5-hT can be either inhibitory or 
excitatory, its effect depends on 5-hT receptor subtype 
activated [2, 3]. The currently accepted classification of 
5-hT receptors (5-hTR) includes seven classes known 
as 5-hT1 to 5-hT7 that comprise 15 subtypes [2, 66]. Most 
of these receptors at mRNA and protein level have been 
recently found to present in the spinal dorsal horn. For 
example, 5-hT1DR, 5-hT3R, 5-hT5R and 5-hT7R are 
mainly localized in the superficial layer of the dorsal 
horn [67-71], in which 5-hT1DR and 5-hT3R are distribut-
ed in local cell bodies and dendrites or central terminals 
of primary afferent fibers; whereas 5-hT5R is mostly 
expressed in dorsal horn neurons [68]. Moreover, 15%–
20% of 5-hT7R in the spinal superficial layer was ob-
served in astrocytes [72]. in contrast, 5-hT1AR and 
5-hT2AR are highly distributed in the spinal deeper lay-
ers and even the ventral horn, respectively [73]. Besides 
the different laminar distribution, Studies from 
Yoshimura’s group [74, 75] indicated that 5-hTR subtype-
specific distribution on excitatory or inhibitory neurons 
and on local or ascending projection neurons also raise 
the possibility of a more intimate coordination and bal-
ance of descending pain modulation between the activi-
ty of descending 5-HT-containing fibers and their target 
spinal cord circuits. Thus, the presence of many 5-hTR 
subtypes enables selective drugs to be designed to thera-
peutically modulate pain processing. For example, 
5-hT7R was found to mainly exist in GABAergic in-
terneurons in spinal lamina iii–V and primary afferent 
terminals in lamina i–ii [68, 76]. in addition, it was also re-
ported that half of the GFP-positive GABAergic cells 
expressed 5-hT1AR but not 5-hT2AR [69]. Furthermore, it 
has been noted that many central terminals of primary 
afferents and descending fibers may contain some 
5-hTR subtypes. The receptor mRNAs for the 5-hT1B, 
5-hT1D, 5-hT2A, 5-hT3 and 5-hT7 were detected in the 

DRG and trigeminal ganglia (TG) neurons by reverse 
transcriptase polymerase chain reaction technique and in 
situ hybridization [76–78]; meanwhile, there was no detect-
able 5-hT2CR expression in the DRG [78, but see 77]. immu-
nostaining showed that 5-hT2AR was located in small- to 
medium-sized DRG neurons either binding the isolectin 
B4 or expressing substance P or TRPV1 receptors [79]. 
Almost half of 5-hT1B, 5-hT1D or 5-hT1FR-positive 
DRG and TG neurons express glutamate or CGRP [80], 
suggesting that synaptic activity of primary afferent fi-
bers could be modulated by descending 5-hT system at 
the spinal level. interestingly, very few reports demon-
strated the presence of 5-hTR subtypes in the RVM 
and PAG. At least, 5-hT2AR was also found to be pres-
ent in the RVM and PAG neurons [81], suggesting that 
some parts of certain 5-hTR expressions in spinal dor-
sal horn may drive from descending fibers, besides lo-
cal neurons and primary afferent inputs. The possible 
existence of function of 5-hT autoreceptors in presyn-
aptic terminals of descending 5-HT-containing fibers in 
spinal nociceptive processing need to pay attention and 
to be further investigated. 

The different distribution of 5-hTR subtypes in the 
spinal dorsal horn and the DRG may result in their dif-
ferent roles in modulation of pain. Although agonists or 
antagonists are more often used in exploring 5-hTR 
subtypes function on pain perception and modulation, 
there are some studies demonstrated that the expression 
of certain 5-hTR subtypes are regulated after tissue and 
nerve injury. There was a significant increase in receptor 
mRNA levels of 5-hT1A, 5-hT1B, 5-hT1F, 5-hT2A, 5-hT3, 
5-hT4 and 5-hT7 in the spinal dorsal horn [77, 82, 83] and 
5-hT1A, 5-hT1B, 5-hT2A and 5-hT3 but not 5-hT1D, 
5-hT1F and 5-hT5A in DRG tissue [84] after hindpaw in-
flammation. increased expression of the 5-hT2AR 
mRNA was observed in the NRM, the ipsilateral side 
of ventrolateral PAG and spinal dorsal horn in arthritic 
rats [81]. Consistently, there were significantly increased 
protein expressions of 5-hT1DR and 5-hT2AR in the ip-
silateral side of spinal cord [85] and the DRG [86] after pe-
ripheral inflammation. in the neuropathic pain model, 
the mRNA of 5-hT2CR was found to be significantly de-
creased in the ipsilateral spinal cord after trigeminal 
nerve injury [87]. On the other hand, a significant increase 
of immunoreactivity of 5-hT7R [88] and 5-hT1DR [85] was 
detected in the ipsilateral spinal cord after spinal nerve 
injury. 5-hT2AR is not significantly different between 
ipsilateral and controlateral sides of the spinal cord after 
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nerve injury, although it is increased in inflammatory 
pain model. Together, tissue and nerve injury produce 
different pattern of changes in distinct 5-hTR subtype 
expressions in the spinal dorsal horn and DRG levels, 
some of which may be involved in descending facilita-
tion and other in descending inhibition, dependent on 
acute or persistent pain states and targeting areas. 

Much endeavor has been intended for understanding 
the role of functional 5-hTR subtype expression in de-
scending pain modulation, in which electrophysiologi-
cal and behavioral examination over the last few years 
has focused on the function of 5-hT1A, 5-hT2 and 5-hT3 
receptors in spinal synaptic transmission and plasticity 
as well as nocifensive responses due to available ago-
nists and antagonists selective to these receptors [89]. The 
results are consistent to behavioral observation that 
5-hT1A receptors exert a pronounced inhibitory influ-
ence upon nociception, activation of 5-hT1AR mimicked 
the action of 5-hT and dose-dependently induced out-
ward current in substantia gelatinosa (SG) neurons from 
in vitro the spinal cord of normal rats [90,91]. Also, 
5-hT1AR agonist 8-OH-DPAT mimicked the first-phase 
inhibition of miniature excitatory postsynaptic currents 
(mEPSCs) and C-afferent-evoked excitatory postsynap-
tic currents (eEPSCs) induced by 5-hT [92]. Consistently, 
another study reported that the inhibitory effects of 
5-hT and 5-hT1AR agonist on the C-fiber responses of 
dorsal horn wide dynamic range (WDR) neurons in the 
spinal cord were significantly decreased following spi-
nal nerve ligation (SNL) [93]. On the contrary, 5-hT1AR 
agonist was found to potently depress evoked field po-
tentials (FPs) only in SNL-treated rats but not in sham 
operated rats [94]. Furthermore, methysergide, a nonse-
lective 5-hT1/2R antagonist, reversed the suppression of 
established long-term potentiation (LTP) of C-fiber-
evoked FPs in naïve animals and the basal expression 
of C-fiber-evoked FPs in animal with nerve injury by 
inhibiting the reuptake of 5-hT [95]. in addition, it was 
reported that 5-hT was involved in the inhibition of 
orofacial nociceptive processing via the activation of 
5-hT1AR and 5-hT2R. Application of 5-hT induces a 
hyperpolarization in the majority of SG neurons of the 
trigeminal spinal subnucleus caudalis (Vc) in mice and 
this effects are mimicked by 5-hT1AR and 5-hT2R ago-
nist and blocked by the antagonists of these two recep-
tors [96]. in contrast, it has been proposed that the activa-
tion of 5-hT2AR exerts pronociceptive actions in spinal 
dorsal horn by sensitizing terminals of peripheral affer-

ent fibers [97,98]. Antagonizing 5-hT2AR blocked 5-hT-
induced transient Ca2+ signaling in DRG neurons and 
attenuated mechanical hyperalgesia induced by injec-
tion of 5-hT into hindpaw [99]. Blocking spinal 5-hT2AR 
and 5-hT2BR significantly promotes the depression of 
C-fiber-evoked spinal FPs by MOR agonist DAMGO 
in nerve-ligated rats but not in the sham group, indicat-
ing that the plastic changes of spinal serotonergic mod-
ulation via 5-hT2AR and 5-hT2BR under pathological 
conditions [100]. Consistently, blockade of 5-hT2AR or 
5-hT2BR in spinal cord slices depressed the evoked po-
tentials only after SNL but not in naïve animal, whereas 
the activation of 5-hT2CR exerts tonic inhibitory activity 
in both groups [100]. Other study reported the inhibitory 
actions of spinal 5-hT2AR in synaptic transmission. 
Both 5-hT2AR and 5-hT2CR antagonists significantly 
rescued 5-HT-induced inhibition on the C-fiber respons-
es of WDR neurons in normal rats [99]. however, the 
same effects needed a higher dose of 5-hT2CR antago-
nist but not 5-hT2AR antagonist in SNL-treated rats. 

Numerous studies suggest that 5-hT3Rs are implicat-
ed in descending pain facilitation [60, 71]. Electrophysio-
logical data demonstrated that functional 5-hT3R was 
highly expressed in both myelinated and unmyelinated 
nociceptors and the activation of 5-hT3R increased re-
lease of neurotransmitters from primary afferent termi-
nals into the spinal dorsal horn. in the 5-hT3R mutant 
mice, the magnitude of spinal cord neuronal firings 
during the second phase was significantly reduced after 
injection of formalin into the center of the receptive 
field [101]. New behavioral evidence indicated that 
5-hT3R-dependent descending facilitation was mediat-
ed by the activation of the protein kinase mammalian 
target of rapamycin (mTOR)-sensitive pathways, con-
tributing to the maintenance of persistent pain states af-
ter nerve injury [102]. Consistently, in vivo electrophysi-
ology experiments showed that blockade of spinal 
5-hT3R significantly inhibited stimulation-evoked re-
sponses and the inhibitory effects in bone cancer group 
are much greater than in the sham group, indicating a 
role for spinal 5-hT3R-dependent descending seroton-
ergic facilitation in cancer-induced bone pain [103]. 
however, some studies also shows spinal plasticity 
does not require the descending serotonergic activity 
mediated by spinal 5-hT3R [104]. Furthermore, it was re-
ported that spinal 5-hT3R may mediate the inhibitory 
effects of 5-hT on synaptic transmission by activation 
of GABAergic neurons [74, 75, 90]. The activation of 5-hT3R 
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significantly depresses C-fiber-evoked FPs in the spinal 
cord of both naïve and neuropathic rats [94]. in SG neu-
rons of the spinal cord, bath application of 5-hT or 
5-hT3R agonist increased the amplitude and the fre-
quency of spontaneous inhibitory postsynaptic currents 
(siPSCs). Moreover, activation of spinal 5-hT3R could 
mimic 5-hT-induced inward current in probably inhibi-
tory neurons [91, 93]. Thus, it seems that most of 5-hTR1–3 

subtypes exhibit dual effects on normal synaptic trans-
mission or plasticity in the spinal dorsal horn after in-
flammation and nerve injury. Behaviorally descending 
inhibition and facilitation will be dependent on net out-
put or state-derived switch of both inhibitory and facili-
tatory effects from complex circuit and functionally 
distinct 5-hTR subtype activation in the spinal cord. 
The function and contribution of spinal diverse 5-hTR 
subtypes in descending pain modulation and central 
sensitization underlying the persistent pain states re-
main to further study. 

4  Concluding remarks  

Our understanding of neural mechanisms of persistent 
pain has mainly focused on the primary afferent-derived 
central sensitization in the spinal dorsal horn. The role 
of active descending facilitation or reduced descending 
inhibition in the maintenance of spinal neuronal hyper-
excitability and behavioral hypersensitivity after tissue 
and nerve injury has undergone recent revitalization 
with the advantage of combination of genetic manipula-
tion, new electrophysiological technique, development 
of selective receptor agents and behavioral pain assess-
ments. Accumulating evidence suggests that endogenous 
pain modulation balancing between 5-hT-dependent  
descending inhibition and facilitation may be mediated 
by integrated inhibitory or facilitatory influence from 
functionally distinct 5-hTR subtype activations in the 
spinal dorsal horn based on acute or chronic pain states. 
Such inconsistent data and complex observations indi-
cate that there are many open questions on function of 
descending 5-hT system waiting for clear and precise 
answers. Appreciating how active descending 5-hT 
pathways interface with functionally distinct 5-hTR 
subtypes and subsequently involve maintenance of cen-
tral sensitization underlying transition of acute pain to 
persistency after injury will “facilitate” to understand 
cellular and molecular mechanisms of chronic pain and 
to develop novel therapies for clinical pain.
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