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Enhancement of GABA-activated currents by arginine vasopressin in 
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Abstract: A growing number of studies have shown that arginine vasopressin (AVP) plays an analgesia role in the modulation of 
nociception. Previous studies have focused on the central mechanisms of AVP analgesia. The aim of the present study was to find out 
whether peripheral mechanisms are also involved. The effect of AVP on GABA-activated currents (IGABA) and GABAA receptor 
function in freshly isolated dorsal root ganglion (DRG) neurons of rats were studied using whole cell patch clamp technique. The 
result showed that, IGABA were potentiated by pre-treatment with AVP (1 × 10−10–1 × 10−5 mol/L) in a concentration-dependent manner. 
Meanwhile, the GABA concentration-response curve was shifted upwards, with an increase of (49.1 ± 4.0)% in the maximal current 
response but with no significant change in the EC50 values. These results indicate that the enhancing effect is non-competitive. In 
addition, the effects of AVP on IGABA might be voltage-independent. This potentiation of IGABA induced by AVP was almost completely 
blocked by the V1a receptor antagonist SR49059 (3 × 10−6 mol/L). Also it could be removed by intracellular dialysis of either GDP-
β-S (5 × 10−4 mol/L), a non-hydrolyzable GDP analog, or GF109203X (2 × 10−6 mol/L), a selective protein kinase C (PKC) inhibitor, 
with the re-patch clamp. These results suggest that AVP up-regulates the function of the GABAA receptor via G protein-coupled 
receptors and PKC-dependent signal pathways in rat DRG neurons, and this potentiation may underlie the analgesia induced by AVP.  
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精氨酸加压素对大鼠背根神经节神经元GABA激活电流的增强作用
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摘  要：越来越多的研究表明，精氨酸加压素(arginine vasopressin, AVP)在痛觉调制中具有镇痛作用。已报道的研究专注于

AVP镇痛的中枢作用机制，而本研究旨在研究AVP镇痛的的外周作用机制。应用全细胞膜片钳技术，在急性分离的大鼠背根

神经节(DRG)神经元上，观察AVP对GABA激活电流(IGABA)的增强作用以及AVP对GABAA受体功能的影响。结果显示，AVP 
(1 × 10−10~1 × 10−5 mol/L)预处理后，IGABA增大，GABA剂量效应曲线上移，IGABA的最大值较之对照增加约49.1%；而EC50值
几乎不变，表示此种加强为非竞争性的，而且AVP对GABA电流的作用可能是电压非依赖性的。AVP对IGABA的加强作用几乎

完全被V1a受体的拮抗剂SR49059 (3 × 10−6 mol/L)阻断。二次钳压技术胞内透析非水解GDP类似物GDP-β-S (5 × 10−4 mol/L)或
PKC抑制剂GF109203X (2 × 10−6 mol/L)也可以阻断AVP对IGABA的加强作用。以上结果提示，AVP经由G蛋白耦联受体以及

PKC信号通路上调DRG神经元GABAA受体的功能，可能是其诱导镇痛作用的基础。
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Arginine vasopressin (AVP) is a nonapeptide of hypo-
thalamic origin that has been postulated to play a regu-
latory role in nociception through direct activation of 
central vasopressin receptors and also through recep-
tors that reside in the peripheral tissues [1]. Several stud-
ies have also shown that AVP displays anti-nociceptive 
effects in both humans and animals [2–4]. AVP is synthe-
sized in and secreted by the magnocellular neurosecre-
tory neurons of the hypothalamo-neurohypophysial 
system [5]. AVP can be used not only as a neurohypoph-
yseal hormone which can regulate peripheral tissue 
activities but also as a neurotransmitter/neuromodulator 
in both central and peripheral nervous system (CNS 
and PNS) [6, 7]. The effect of AVP on antinociception in 
rat was investigated. Painful stimulus enhances hypo-
thalamic paraventricular nucleus (PVN) synthesis and 
secretion of AVP, in which there was a negative relation-
ship between pain threshold and AVP concentration [8].  
AVP receptors are represented by 3 distinct subtypes 
classified as V1a, V1b and V2 receptors [9]. The pres-
ence of V1a receptor in the rat anterior pituitary was 
revealed by immunocytochemistry [10, 11]. On  one hand, 
it was shown that V1a receptor in dorsal root ganglia 
(DRG) might represent a previously unrecognized tar-
get for the analgesic action of AVP [12]. On the other 
hand, both oxytocin (OT) and AVP, as well as the OT 
and V1a receptor, display a high degree of sequence 
homology, and both peptides can activate these two 
receptors [13]. OT-induced analgesia is also mediated by 
V1a receptor in the mouse [12]. In contrast to OT, AVP 
modulations of pain are still uncertain and were inferred 
mostly by mechanism of neuronal V1a receptor [14]. In 
the spinal cord, OT may inhibit nociceptive neuronal 
responses indirectly by activating inhibitory GABA 
interneurons, or directly by inhibiting second-order 
neurons [15–18]. A recent study has revealed the existence 
of OT receptor and its modulation on GABAA receptor 
function in the primary sensory neurons [19]. The effect 
of OT on GABA-activated current (IGABA) was mim-
icked by AVP and mediated by the V1a receptor. More-
over, AVP is expressed in sympathetic ganglia, DRG, 
trigeminal ganglion (TG) neurons and located in the 
small cells [20–22]. The functions of neuropeptides in the 
PNS are diverse, such as sensory transmission, inflam-
matory response and alarm response [23, 24]. They are 
also considered to serve as neurotransmitter or modula-
tor in the sensory nervous system [25, 26]. Other reports 
showed that AVP was related to analgesia in the CNS [27, 28]. 
It has been shown that AVP release is under a tight 

regulation by opioids in human and intrathecal injec-
tion of AVP fails to produce hyponociception in the tail 
flick test [20, 29]. AVP-induced analgesic effect on acido-
sis-evoked pain was completely absent in V1a−/− mice, 
but present in WT littermates [30]. However, it is still 
unknown whether the effect of AVP on nociceptive pro-
cessing occurs in peripheral terminals of primary sen-
sory afferents. 

 γ-aminobutyric acid (GABA) is a major inhibitory 
transmitter that acts through the GABAA and GABAB 

receptors in the CNS. In the axo-axonal synapses in the 
spinal cord, GABA and GABA receptors mediate syn-
aptic inhibition by causing a reduction of the release of 
excitatory transmitter from primary afferent nerve ter-
minal, termed ‘presynaptic inhibition’ [31, 32]. It has been 
suggested that a variety of substances modulated the 
GABA response through phosphorylation and dephos-
phorylation of the GABAA receptor-chloride channel 
complex [33‒41]. In the present study, we will investigate 
the effect of AVP on GABAA receptor-mediated responses 
and underlying mechanism in rat DRG neurons. 

1   MAtERiAls And MEthods

1.1  Isolation of the DRG neurons
The experimental protocol was approved by the Animal 
Research Ethics Committee of Hubei University of Sci-
ence and Technology. All procedures conformed to in-
ternational guidelines on the ethical use of animals, and 
every effort was made to minimize the number of ani-
mals used and their suffering. Six- to eight-week-old 
Sprague-Dawley male rats were anaesthetized with eth-
yl ether and then decapitated. The DRGs were taken 
out and transferred immediately into Dulbecco’s modi-
fied Eagle’s medium (DMEM, Sigma-Aldrich, St. Lou-
is, MO, USA) at pH 7.4. After the removal of the sur-
rounding connective tissues, the DRGs were minced 
with fine spring scissors, and the ganglion fragments 
were placed in a flask containing 5 mL of DMEM, 
which was composed of 0.5 mg/mL of trypsin (type II-
S, Sigma), 1.0 mg/mL of collagenase (type I-A, Sigma) 
and 0.1 mg/mL of DNase (type IV, Sigma), and incu-
bated at 35 °C in a shaking water bath for 25‒30 min. 
Soybean trypsin inhibitor (1.25 mg/mL of type II-S, 
Sigma) was then added to stop trypsin digestion. Disso-
ciated neurons were placed into a 35-mm Petri dish and 
kept for at least another 60 min before electrophysio-
logical recordings. The neurons selected for electro-
physiological experiment were 15‒35 μm in diameter.
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1.2  Electrophysiological recordings
Whole-cell patch clamp and voltage-clamp recordings 
were carried out at room temperature (22‒25 °C) by 
using a MultiClamp-700B amplifier and Digida-
ta-1440A A/D converter (Axon Instruments, CA, 
USA). Recording pipettes were pulled using a Sutter 
P-97 puller (Sutter Instruments, CA, USA). The micro-
pipettes were filled with internal solution containing: 
KCl (140 mmol/L), MgCl2 (2.5 mmol/L), HEPES (10 
mmol/L), EGTA (11 mmol/L) and ATP (5 mmol/L). Its 
pH was adjusted to 7.2 with KOH, and the osmolarity 
was adjusted to 310 mOsmol/L with sucrose. Cells 
were bathed in an external solution containing: NaCl 
(150 mmol/L), KCl (5 mmol/L), CaCl2 (2.5 mmol/L), 
MgCl2 (2 mmol/L), HEPES (10 mmol/L), D-glucose 
(10 mmol/L). The osmolarity was adjusted to 330 mOs-
mol/L with sucrose, and the pH was adjusted to 7.4 
with NaOH. The resistance of the recording pipette was 
in the range of 2 to 6 MΩ. A small patch of membrane 
underneath the tip of the pipette was aspirated to form 
a gigaseal, and then a negative pressure was applied to 
rupture it, thus establishing a whole-cell configuration. 
The adjustments of capacitance and series resistance 
compensations were done before recording the mem-
brane currents. The membrane voltage was maintained 
at −60 mV in all voltage-clamp experiments, except 
when indicated otherwise. Membrane currents were fil-
tered at 2 to 10 kHz, and the data were stored in com-
patible PC for off-online analysis using the pCLAMP 
10 acquisition software (Axon Instruments, CA, USA). 
1.3  Intracellular dialysis by using re-patch technique
In ‘re-patch’ experiment the first patch-clamp recording 
was used as the control using a pipette filled with nor-
mal internal solution. After recording, the pipette was 
discarded. On the same neuron, a second patch-clamp 
recording was performed using another pipette that was 
filled with normal, GDP-β-S or GF109203X-containing 
internal solution [38, 42]. After 30 min, the membrane cur-
rent was recorded again and compared with the results 
of the control. 
1.4  Drug application
Drugs including GABA, bicuculline, AVP, SR49059, 
DMEM, trypsin, collagenase, Dnase and soybean tryp-
sin inhibitor were purchased from Sigma Chemical Co. 
All drugs were dissolved daily in the external solution 
just before use and held in a linear array of fused silica 
tubes (o.d/i.d = 500/200 μm) connected to a series of 
independent reservoirs. The application pipette tips 

were positioned ~30 μm away from the recorded neu-
rons. The application of each drug was driven by gravi-
ty and controlled by the corresponding valve, and rapid 
solution exchange could be achieved within about 100 ms 
by shifting the tubes horizontally with a PC-controlled 
micromanipulator. Cells were constantly bathed in 
normal external solution flowing from one tube con-
nected to a larger reservoir between drug applications. 
In some experiments where GDP-β-S (Sigma) and 
GF109203X (Research Biochemicals Incorporated) 
were applied for intracellular dialysis, they were 
dissolved in the internal solution before use. 
1.5  Data analysis
All data were analyzed by pCLAMP 10 (Axon Instru-
ments, CA, USA) and Origin 7.5 (Microcal Software, 
USA). Data were expressed as mean ± SEM. Data were 
statistically compared using the Student’s t-test or anal-
ysis of variance (ANOVA), followed by Bonferroni’s 
post hoc test. Statistical analysis of concentration- 
response data was performed using the nonlinear 
curve-fitting program ALLFIT. A P value < 0.05 was 
considered statistically significant.

2   REsults

2.1  Effects of AVP on IGABA in rat dRG neurons
Freshly isolated neurons from rat DRGs were used in 
the present study. In the majority of the neurons exam-
ined (93.8%, 121/129), GABA induced a concentra-
tion-dependent (1 × 10−6‒1 × 10−3 mol/L) inward cur-
rent. The IGABA induced by GABA (1 × 10−4 mol/L) 
could be blocked reversibly by bicuculline (5 × 10−5 

mol/L), a selective antagonist of GABAA receptor, indi-
cating that this current was mediated by GABAA recep-
tor (Fig. 1A). When GABA was applied regularly for 
durations of 4 s with 4 min interval, and no obvious 
‘run-down’ of IGABA was seen during the whole-cell 
recording for at least 90 min. Then, this pattern of 
GABA application was used in the following experi-
ments.

The 121 DRG neurons sensitive to GABA (1 × 10−4 
mol/L) were pretreated with AVP (1 × 10−6 mol/L) for 
60 s. The majority (74.4%, 90/121) of IGABA recorded 
were potentiated obviously by AVP (Fig. 1B). The am-
plitude of IGABA increased by (44.9 ± 6.6)% in 90 neu-
rons (P < 0.01, paired t-test), and decreased by (12.1 ± 
3.1)% in 17 neurons examined. However, AVP had no 
effect on the IGABA in the other 4 neurons examined 
(3.3%, 4/121), and the IGABA change in amplitude was 
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only (2.2 ± 0.9)% (P > 0.05, paired t-test). In the pres-
ent study, we established a cut-off value for the effect 
of AVP, which was a change of IGABA  amplitude exceed-
ing 10%. When pooling all data from the 121 neurons 
examined, pre-application of AVP was found to in-
crease the IGABA by (33.6 ± 3.9)% (P < 0.05, paired 
t-test). The potentiating effect of AVP on IGABA disap-
peared after 8‒10 min washout (Fig.1B) and was repro-
ducible in the same DRG neurons.
2.2  Blockade of AVP-induced potentiation of IGABA 

by sR49059
To verify whether the potentiation of IGABA by AVP (1 × 
10−6 mol/L) was mediated by the V1a receptor, the 
effect of the pre-application of AVP with SR49059 (3 × 
10−6 mol/L), a selective V1a receptor antagonist, on IGABA 
was examined. IGABA increased to (144.9 ± 6.6)% with 
pre-application of AVP under the premise that control 
currents were normalized to 100% (P < 0.01, n = 7, 
paired t-test). However, IGABA was (114.1 ± 5.8)% when 
AVP was co-applied with SR49059 (Fig. 1D). As 
shown in Fig. 1C and D, the potentiation of IGABA by 

pretreatment with AVP could be blocked by the admin-
istration of SR49059 (P < 0.01, n = 8, paired t-test). 
Moreover, SR49059 (3 × 10−6 mol/L) itself had no ef-
fect on IGABA (data not shown).
2.3  Concentration-dependent potentiation of IGABA 
by AVP
The potentiation of IGABA was dependent on the concen-
tration of AVP. Fig. 2A shows that the amplitudes of 
IGABA (1 × 10−4 mol/L) increased when AVP was used to 
pre-treat the DRG at concentrations of 1 × 10−10 mol/L 
to 1 × 10−5 mol/L. The minimal effective concentration 
of AVP was 1 × 10−10 mol/L, which produced a (5.4 ± 
1.6)% (n = 8) potentiation of IGABA. AVP caused the 
maximum enhancement of IGABA by (46.3 ± 9.4)% (n = 
9) at concentration of  1 × 10−5 mol/L. The EC50 value 
of concentration-potentiation curve for AVP was 5.316 × 
10−9 mol/L (Fig. 2B).
2.4  Effect of pretreatment time of AVP on its poten-
tiation of IGABA

As can be seen from Fig. 3, AVP did not increase IGABA 
when AVP was applied simultaneously to the DRG 

Fig. 1. Modulatory effects of AVP on GABA-activated currents in rat DRG neurons. A: The inward current evoked by 1 × 10−4 mol/L 
GABA could be blocked by the GABAA receptor antagonist bicuculline in rat DRG neurons evoked at −60 mV. B: Sixty seconds of 
pre-application of AVP (1 × 10−6 mol/L) exerts an enhancing effect on IGABA. The current traces in C and the bar graph in D show that 
the potentiation of IGABA by AVP was abolished by SR49059 (3 × 10−6 mol/L), a V1a receptor antagonist. Mean ± SEM, n = 7 or 8. 

**P < 0.01. 
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with GABA (i.e. no pretreatment). However, after 
pre-application of AVP for at least 15 s, the potentiation 
of IGABA by AVP emerged. This suggests that the poten-
tiation by AVP of IGABA is a time-dependent process and 
that an intracellular signal transduction pathway may 
be involved. To explore how the duration of AVP pre-
treatment will affect its potentiation on IGABA, AVP at a 
dose of 1 × 10−6 mol/L was pre-applied to DRG neurons 
with durations ranging from 15 to 90 s and reached its 
maximum (53.7 ± 5.2)% (n = 7) with 90 s used. The 
results depicted in Fig. 3A demonstrated that the 
enhancing effect of AVP on the amplitude of IGABA was 
increased gradually from 15 s, step by step, until a peak 
value appeared at 90 s. Thereafter, the IGABA did not 
increase anymore.
2.5  Concentration-response and current-voltage 
relationships for GABA with and without pretreat-
ment of AVP 
The magnitude of AVP potentiation on IGABA dependeds 
upon the GABA concentration. Fig. 4A shows the con-
centration-response curves for GABA in the absence 
and presence of AVP (1 × 10−6 mol/L). It can be seen 
that (i) the concentration-response curve for GABA 

with pretreatment of AVP shifted upwards compared 
with the control; (ii) the EC50 values in both curves 
were not statistically different (P > 0.05, n = 8, Bonfer-
roni’s post hoc test); (iii) the maximal amplitude of IGABA 
after pretreatment with AVP increased by (49.1 ± 4.0)% 
when compared with the control (P < 0.01, paired t-test, 
n = 6); (iv) the threshold values of both curves were 
basically the same (Fig. 4A). 

The current-voltage (I‒V) curves for GABA (1 × 10−4 
mol/L) with and without pretreatment with AVP (1 × 
10−6 mol/L) were demonstrated in Fig. 4B. AVP en-
hanced IGABA at all holding potentials between −80 and 
40 mV as shown by the increase in the slope of the I‒V 
curve, and the reversal potentials of two curves were 
near 0 mV.
2.6  Analysis of intracellular signal transduction 
pathway in the potentiation of IGABA by AVP
As identified in Fig. 3, the AVP potentiation of IGABA 
was positively related to the duration of AVP pretreat-
ment, implying that the potentiation was time- 
consumptive process and that an intracellular signal 
transduction pathway might be involved. So we further 
explored the intracellular cascades concerned in the 

Fig. 2. Concentration-dependent potentiation of GABA-activated currents (IGABA) by AVP. A: Sequential current traces illustrating 
the potentiation of IGABA induced by different concentrations of AVP (1 × 10−10‒1 × 10−5 mol/L) in a DRG neuron. IGABA was elicited 
by application of GABA (1 × 10−4 mol/L). B: Statistical graph showing that IGABA was enhanced step by step with the increase of AVP 
concentration from 1 × 10−10 mol/L to 1 × 10−5 mol/L. The pretreatment time for AVP was 60 s. Mean ± SEM, n = 6‒11.
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Fig. 3. Effect of the duration of the pre-application of AVP on its potentiation of GABA-activated currents (IGABA). A: Current traces 
demonstrating that the increase of IGABA induced by AVP (1 × 10−6 mol/L) is related to the duration of its pre-application. B: Statistical 
graph showing that the potentiation of IGABA by AVP was enhanced when the duration of the pre-application was increased from 15 to 
90 s. Note: Between 75 and 90 s of pre-application, the enhancement of IGABA reached its maximum value. Mean ± SEM, n = 7‒10.

Fig. 4. Concentration-response and current-voltage (I‒V) relationships for GABA with or without the pre-application of AVP. A: The 
concentration-response curves for GABA with or without AVP (1 × 10−6 mol/L) pre-application. All GABA-induced currents (IGABA) 
were normalized to the response induced by 1 × 10−3 mol/L GABA applied alone (marked with asterisk). Mean ± SEM, n = 6‒9. B: 
The I‒V curves for IGABA with and without AVP (1 × 10−6 mol/L) pre-application. All current values from the same cell were normal-
ized to the current response induced by GABA (1 × 10−4 mol/L) applied alone at the holding potential of ‒60 mV (marked with aster-
isk). Mean ± SEM, n = 6‒9. The experiment was carried out using recording pipettes filled with CsCl-containing internal solution.



QIU Fang et al.: Enhancement of GABA-activated Currents by AVP in Rat DRG Neurons 653

and the IGABA was (98.3 ± 7.2)% (P > 0.05, post hoc 
Bonferroni’s test, n = 7) when the internal solution 
contained GDP-β-S (5 × 10−4 mol/L) (Fig. 5B). In 
contrast, the potentiation of IGABA induced by AVP was 
abolished when examined at 30 min after intracellular 
dialysis with either GF109203X (P < 0.05, n = 9, post 
hoc Bonferroni’s test) or GDP-β-S (P < 0.01, n = 9, 
post hoc Bonferroni’s test) (Fig. 5C). Taken together, 
these results suggest that the binding activity of AVP to 
the V1a receptor may be reduced by PKC inhibitors.

3   disCussion

The present study demonstrated that AVP dose- 
dependently enhanced IGABA via V1a receptor and PKC 
dependent signal pathways in freshly isolated rat DRG 
neurons. AVP shifted the GABA concentration- 

potentiation of IGABA by AVP using the re-patch tech-
nique. V1a receptor belongs to the G protein-coupled 
receptor family, and the activation of these receptors 
leads to a cascade of events that activate the PKC sys-
tem [7, 43]. To further explore whether the potentiation of 
IGABA by AVP was mediated through the G-protein-PKC 
signaling pathway, GF109203X (a selective PKC inhibitor, 
2 × 10−6 mol/L ) and GDP-β-S (a non-hydrolyzable 
GDP analog, 5 × 10−4 mol/L) were applied internally to 
DRG neurons through recording patch pipettes. In the 
control experiments, each neuron was patch-clamped 
twice with the normal internal solution. When being 
patched with the pipette filled with normal internal 
solution for 30 min, the IGABA was (96.4 ± 6.3)% (n = 9). 
The IGABA was (95.6 ± 9.0)% (P > 0.05, post hoc Bon-
ferroni’s test, n = 12) when the pipette was filled with 
internal solution containing 2 × 10−6 mol/L GF109203X, 

Fig. 5. G-protein coupling and intracellular phosphorylation are shown to be involved in the potentiation of GABA-activated currents 
(IGABA) by AVP. A: Current traces after treatments with normal internal solution (Int Sol), GF109203X (2 × 10−6 mol/L), or GDP-β-S (5 × 10−4 
mol/L). GF109203X and GDP-β-S were included in the recording pipette for intracellular dialysis. Arrows represent re-patch clamp 
with normal internal solution or intracellular dialysis. B: Statistical graph showing that GF109203X (n = 12) or GDP-β-S (n = 7) alone 
had no effect on IGABA, compared with normal internal solution (n = 9). C: Intracellular dialysis of GF109203X or GDP-β-S abolished 
the enhancing effect of AVP (1 × 10−6 mol/L) on IGABA. *P < 0.05, **P < 0.01 vs Normal. Mean ± SEM, n = 9.
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response curve upwards and increased the maximum 
response without changing the threshold value and 
EC50 significantly. These results showed that the in-
trinsic efficacy of the GABAA receptor increased after 
it was pretreated with AVP. However, its affinity did 
not change. This also indicated that AVP did not act at 
the recognition site for GABA on the GABAA receptor 
and enhanced IGABA in a non-competitive manner. 
Moreover, the AVP-induced potentiation of IGABA might 
not be voltage-dependent. There results suggest that 
AVP activated the signal pathway of V1a receptor- 
G-protein-PKC in DRG neurons. The minimum effec-
tive concentration for AVP to cause GABA-activated 
currents responses was 1 × 10−10 mol/L in DRG neu-
rons. This concentration is close to that reported for 
AVP-evoked intracellular Ca2+ concentration responses 
in hippocampal and cortical astrocytes [44]. Moriya et al. 
also reported that AVP (1 × 10−10‒1 × 10−6 mol/L) 
induced an increase in intracellular Ca2+ in the non-neu-
ronal cells isolated from the rat DRG and cultured in 
vitro, and the minimum effective concentration of AVP 
was 1 × 10−10 mol/L [5]. Thus we demonstrated that IGABA 
of DRG neurons responses to AVP in a concentra-
tion-dependent manner in the physiological range. 
These results also suggest that AVP modulates the 
activity of DRG glial cells via activation of V1a receptor.

The GABAA receptor belongs to a superfamily of 
ligand-gated ion channel receptors whose intracellular 
loop between transmembrane domains III and IV is the 
target of many protein kinases, and the phosphorylation 
of these receptors can result in receptor function chang-
es [45]. GABAA receptor is down-regulated by direct 
phosphorylation via PKC [46]. It has been established 
that the suppression of IGABA by substance P (SP) is 
caused by phosphorylation of GABAA receptor through 
activating PKC [41, 46]. It was also regarded that potenti-
ation of I5-HT by PKC is mediated by the promotion of 
membrane trafficking of 5-HT3 receptor via F-actin [47]. 
Recent studies have demonstrated that AVP increases 
GABA to release V1a receptor and the effects of vaso-
pressin on GABAergic transmission in the hippocam-
pus via G-protein, intracellular Ca2+ and PKC [48]. In the 
present study, we found that the potentiation of IGABA by 
AVP was blocked by SR49059, a V1a receptor antago-
nist [49]. Moreover, the AVP applied prior to GABA ap-
plication induced potentiation of IGABA, and this effect 
was positively related to the duration of AVP pretreat-
ment, implying that this potentiation was a time-con-
suming process. Thus, the potentiation of IGABA by AVP 

possibly involved intracellular signal transduction. 
GDP-β-S, a non-hydrolyzable substrate for G-protein, 
prevented the enhancing effect of AVP on the IGABA, 
suggesting that a G-protein pathway mediated the 
potentiation of the native IGABA in DRG neurons. The 
potentiation of IGABA was clearly blocked by intracellular 
dialysis of GF109203X, a selective PKC inhibitor [50]. 
In addition, it has been shown that GABA-receptor- 
mediated current increased when cAMP-dependent 
protein kinases were inhibited by the activation of the 
CB1 receptor [38]. Thus, the GABAA receptor-mediated 
current increased when these kinases were inhibited by 
the activation of the V1a receptor. These results suggest 
that AVP activated the signal pathway of V1a receptor- 
G-protein-PKC. These results help to extend our under-
standing of the relevant receptor physiology. It should 
be pointed out that rich sources of synthetic ligands and 
knowledge of ligand-receptor interactions allowed the 
AVP/OT receptor system to act as a prototypical G- 
protein-coupled receptors family member.

Schorscher-Petcu et al. concluded that V1a receptor 
mRNA was abundantly expressed in mouse DRG neu-
rons, and V1a receptor positive neurons were predomi-
nantly of small and medium diameter [12]. Similar to 
OT, systemic injections of AVP resulted in analgesia [51]. 
OT and AVP can not cross the blood-brain barrier [52]. 
So far, it is not known whether the hormonal role of 
AVP on nociceptive processing occurs in peripheral ter-
minals of primary sensory afferents. Several reports 
have provided evidence for the presence of GABAA 
receptors in the primary sensory neurons of adult rats. 
For example, the expression of GABAA receptor in the 
soma and central processes of nociceptive DRG and 
TG neurons was reported in the adult rat [53, 54]. A study 
has also shown that OT inhibits the activity of acid- 
sensing ion channels through the V1a receptors in pri-
mary sensory neurons in the rat DRG neurons [30]. As 
we know, GABAA receptor belongs to the superfamily 
of ligand-gated ion channel receptors, while GABAB 
receptor is classified as a G-protein-coupled receptor [55]. 
Our results revealed that the function of the GABAA 
receptors was potentiated by the activation of V1a 
receptors in primary sensory neurons, indicating that 
the analgesic effect of AVP originated in the peripheral 
terminals of primary sensory neurons via the activation 
of GABAA receptors expressed in the peripheral termi-
nals of the DRG neurons. However, GABA acts on 
both GABAA and GABAB receptors, so we cannot 
exclude the possibility that GABAB receptors can be 
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potentiated by the activation of V1a receptors in prima-
ry sensory neurons. To confirm this point, we need 
more research.

GABA is an established inhibitory neurotransmitter 
that acts through the GABAA receptors. It opens the Cl− 
channel and is involved in primary afferent depolariza-
tion, an effect known as ‘pre-synaptic inhibition’ [31]. 
This action of GABA results in a decrease in the 
amount of neurotransmitter, including SP and gluta-
mate released from primary afferent terminals [38]. Un-
der normal conditions, GABA exerts tonic modulation 
of nociceptive neurotransmission between primary affer-
ents and second-order, spino-thalamic tract neurons [56]. 
In the present study, we used the cell body of DRG 
neurons as a simple and accessible model to examine 
the characteristics of the membrane of peripheral termi-
nals. The presence of AVP and a neuropeptidergic sys-
tem in DRG has been known for some time [57, 58], but 
there are no detailed studies of the possible effects and 
signaling pathways evoked by involvement AVP. If 
AVP enhances the GABA response at the peripheral 
terminals of primary afferent neurons by activating the 
V1a receptor, as it does in the soma membrane, poten-
tiation of the ‘pre-synaptic inhibition’ would directly 
result in the inhibition of nociception in the spinal cord. 
It is known that the analgesic actions of exogenously 
administered neurohypophyseal hormones target at dif-
ferent pain modalities [1, 59–62], but very little is known 
about the role of endogenous AVP in pain processing. 
Therefore, AVP was directly associated with the modu-
lation of primary sensory information (including pain) 
at the peripheral terminals of primary afferent neurons, 
which provides a reasonable explanation of AVP- 
induced antinociception in the spinal dorsal horn.
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