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Abstract: Fructose intake has increased dramatically over the past century and the upward trend has continued until recently. Increasing 
evidence suggests that the excessive intake of fructose induces salt-sensitive hypertension. While the underlying mechanism is com-
plex, the kidney likely plays a major role. This review will highlight recent advances in the renal mechanisms of fructose-induced 
salt-sensitive hypertension, including (pro)renin receptor-dependent activation of intrarenal renin-angiotensin system, increased nephron 
Na+ transport activity via sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter, increased renal uric acid production, decreased 
renal nitric oxide production, and increased renal reactive oxygen species production, and suggest actions based on these mechanisms 
that have therapeutic implications.
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果糖诱导盐敏感性高血压的肾脏机制
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摘  要：从过去一个世纪以来，果糖的进食量急剧增加，并且与糖尿病、肥胖、肾衰、高血压等的发生密切相关。目前越来

越多的证据证明过量的果糖饮食会引起盐敏感性高血压，其发生机制十分复杂，但是肾脏可能在其中扮演着重要的角色。

本文主要阐述了果糖诱导盐敏感性高血压的肾相关机制，包括肾素原受体依赖的肾内肾素-血管紧张素系统的活化，肾内Na+

转运体钠氢交换子3 (sodium/hydrogen exchanger 3, NHE3)和Na-K-2Cl共转运体(Na/K/2Cl cotransporter, NKCC2)的活化，肾内

尿酸产生的增加，肾内一氧化氮合成的降低，以及肾内活性氧产生的增加，并以此为理论依据提出潜在的治疗盐敏感性高

血压的靶点或策略。
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1  Introduction

Hypertension is the major risk factor for the high mor-

bidity and mortality of cardiovascular disease and kidney 
disease. The number of adults with elevated blood pres-
sure (BP) has increased from 594 million in 1975 to 
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1.13 billion in 2015 [1]. More than 40% of persons > 25 
years have hypertension (http://apps.who.int/iris/han-
dle/10665/79059). It is the leading cause of death and 
disability globally [2], given that an estimated 1 600 
million people a year, die from cardiovascular disease, 
and about 50% of them are caused by hypertension [3]. 
It is often referred to as “the silent killer” with low 
awareness, treatment and control rate, frequently 
displaying no overt symptomatology, and only 50% of 
the patients’ BP were under control [3]. 

Increased salt intake represents a major environmental 
factor that contributes to pathogenesis of essential 
hypertension. Enhanced sensitivity of BP to salt intake 
is present in nearly half of Americans who are afflicted 
with hypertension, including approximately 75% of 
African American hypertensive patients [1–3]. A large 
epidemiological study performed by Elliott et al. 
showed that individual 24-hour urinary Na+ excretion 
higher by 100 mmol was associated with systolic/dia-
stolic BP higher than average by 6/3 mmHg [4]. Similarly, 
another large clinical trial performed by Cutler et al. 
showed that individual 24-hour Na+ intake lower by 
100 mmol was associated with systolic/diastolic BP 
lower than average by 5.8/2.5 mmHg [5]. High-salt (HS) 
diet is particularly prominent in China. It was reported 
that the 24-hour urinary Na+ excretion of man/woman 
was 299/253 mmol in north China (Beijing) and the 24-
hour salt intake of man in Tianjin was 254 mmol, while 
in the south China (Guangxi), the 24-hour salt intake of 
man/woman was 150/128 mmol, which corresponds to 
a higher incidence of hypertension and stroke in north 
China than that in south China [6, 7]. Thus, there appears 
to be a positive correlation relationship between salt 
intake and BP, and a better understanding of the mech-
anisms of salt-sensitive hypertension (SSH) is important 
for the prevention and control of hypertension.

Fructose is a monosaccharide that is widely present 
in natural food sources such as fruits, vegetables, and 
honey. In addition to hepatic origin, approximately 
50% of the filtered fructose is reabsorbed in the proxi-
mal tubules (PTs) via the fructose transporters SGLT5, 
GLUT5 and GLUT2, and metabolized via fructokinase 
(KHK), which depletes adenosine triphosphate (ATP) 
and generates adenosine diphosphate (ADP), then stim-
ulates adenosine monophosphate (AMP) deaminase 
and increases the degradation of nucleotides to form 
uric acid (UA) [8–10]. Intake of fructose has increased 
dramatically over the last century and the upward trend 
continued until recently since fructose has been used as 

sweet additives (https://www.ers.usda.gov/publications/
pub-details/?pubid=90411) [11]. It has been nearly 31 
years since Hwang et al. in 1987 for the first time 
showed that fructose-fed rats exhibit insulin resistance, 
hyperinsulinemia, hypertriglyceridemia, and hyperten-
sion [12]. Since then, more studies suggested that exces-
sive fructose intake is linked to the epidemics of diabe-
tes mellitus, obesity, renal failure, hypertension, and 
electrolyte dysregulation [13–17]. A number of studies 
have linked high-fructose (HF) feeding with hyperten-
sion and provided several possible mechanisms includ-
ing increased sympathetic nervous system activity, cir-
culating catecholamines, renin-angiotensin system 
(RAS) activity and angiotensin II (Ang II) levels, Na+ 
reabsorption, secretion of endothelin-1, production of 
UA, and impaired endothelium-dependent relaxation, 
etc. These topics have been covered by a number of 
comprehensive reviews [18–21]. 

It has recently been shown that HF alone had no 
effect on BP but a combination of HF and HS diet 
induced SSH as assessed by using radiotelemetry [22–27]. 
We for the first time demonstrated an important role of 
(pro)renin receptor (PRR) in mediating HF-induced 
SSH in rats. Further evidence from our study and others 
suggests a potential mechanism involving overactiva-
tion of intrarenal RAS, and the mechanism may involve 
activation of ion transporters including sodium/hydro-
gen exchanger 3 (NHE3) [26, 27], Na/K/2Cl cotransporter 
(NKCC2) [17, 27], and Na+-K+-ATPase [28, 29], and increased 
renal reactive oxygen species (ROS) [30], increased renal 
UA production [27], and decreased renal nitric oxide 
(NO) [31]. Here, the major objective of this article is to 
review recent advances in this filed with emphasis on 
PRR and intrarenal RAS.  

2  Renal PRR regulates intrarenal RAS during 
HF-induced SSH

The RAS has been known for about 120 years since 
renin was first discovered by Tigerstedt and Bergman 
in 1898 [32]. During the past decade, there has been a 
paradigm shift in our understanding of the RAS. 
Increasing evidence suggests a local RAS has been 
found in various target tissues including heart, blood 
vessels, brain, adrenal glands, and kidney [33, 34]. Strong 
evidence suggests that intrarenal RAS contains all the 
RAS components, including angiotensinogen (AGT), 
prorenin/renin, angiotensin-converting enzyme (ACE), 
Ang II type 1 receptor (AT1R), AT2R, AT4R, and PRR, 
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which play a crucial role in hypertension and kidney 
diseases [35, 36]. Aberrant activation of local RAS plays a 
pivotal role in the pathogenesis of hypertension as well 
as cardiovascular and renal disease. In particular, Dahl 
salt-sensitive rats showed suppressed circulating RAS 
but enhanced intrarenal RAS as reflected by increases 
of renal PRR, AGT, ACE, AT1R, and Ang II levels fol-
lowing HS loading, respectively reported by Kobori et 
al.[37] and Zhu et al.[38]. 

PRR, a new component of the RAS, was first cloned 
as a specific receptor for prorenin and renin by Nguyen 
et al. in 2002 [39]. Although Cousin et al. [40] and Yoshi-
kawa et al. [41] respectively reported that PRR can be 
cleaved by furin or A Disintegrin and Metalloproteinase 
19 (ADAM19) to generate soluble PRR (sPRR),  Nak-
agawa et al. [42] recently reported that site-1 protease 
(S1P) is a dominant enzyme in the generation of sPRR. 
Full-length PRR is synthesized in endoplasmic reticulum 
and then cleaved by S1P in Golgi apparatus (Golgi), 
and furin in the trans-Golgi network to generate sPRR 
for extracellular secretion [42]. Consistently,  our recent 
published data showed that S1P but not furin or 
ADAM19 is responsible for the sPRR generation 
induced by bovine serum albumin treatment, which 
plays an essential role in the regulation of renin activity [43]. 
It is increasingly evident that PRR/sPRR serves a mul-
titude of functions [44] in regulating embryogenesis via 
vacuolar H+-ATPase and Wnt/β-catenin signaling [45], 
balancing sodium via NADPH oxidase 4 (NOX4)/ 
H2O2 signaling [46], regulating water via prostaglandin 
E2/prostaglandin E2 type 4 receptor signaling [47] or liver 
X receptor [48], modulating acid secretion via vacuolar 
H+-ATPase [49], etc. 

Despite some controversial reports, increasing evi-
dence supports an important role of PRR in the patho-
genesis of hypertension and the regulation of local 
RAS. For example, transgenic rats with human PRR 
overexpression in vascular smooth muscle cells [50] but 
not in the whole body [51] exhibited higher BP. 
Brain-specific PRR knockdown with short hairpin RNA 
attenuated age-dependent increases in mean arterial 
pressure in the spontaneously hypertensive rats [52] and 
Ang II-dependent hypertension [53]. Neuron-specific 
PRR knockout [54] and intracerebroventricular infusion 
of the PRR antagonist PRO20 (the first 20 amino acid 
residues of the prorenin prosegment, L1PTRTAT-
FERIPLKKMPSVR20) [55] attenuated the development 
of deoxycorticosterone acetate-salt-induced hyperten-
sion. Within the kidney, PRR is expressed in multiple 

structures including the intercalated cells, mesangial 
cells, and renal vascular smooth muscle cells. Func-
tional evidence is also available to support a Na+- and 
water-retaining and pro-hypertensive action of renal 
PRR. 

In HF model, local RAS is activated in aorta [56], 
kidney [56, 57], and skeletal muscle [58], as reflected by the 
upregulation of prorenin/renin, AT1R, Chymase, Ang I, 
and Ang II levels in these tissues. Consistent with this 
notion, we recently reported that HF intake significantly 
increased renal PRR expression and urinary sPRR 
excretion, in parallel with an increase of renal renin 
expression and urinary renin and Ang II levels, without 
affecting plasma Ang II concentrations [27]. Functional 
evidence demonstrated that PRR antagonism with 
PRO20 treatment effectively suppressed HF-induced 
activation of intrarenal RAS as well as SSH [27]. These 
results support the association between renal PRR and 
intrarenal RAS in the HF model.

The involvement of systemic RAS in the HF model 
is inconsistent. Iyer et al. reported that plasma Ang II 
levels of fructose-fed rats were significantly increased 
at the end of the second week and returned to basal levels 
at the end of the fourth week of dietary treatment [59]. 
However, in a rat model of 12-week HF treatment, we 
found no change in plasma Ang II concentrations [27]. 
Interestingly, the HS-induced suppression of plasma 
renin activity is blunted in fructose-fed animals [31, 60], 
suggesting that dysregulation of systemic RAS may 
contribute to HF-induced SSH. Future studies are nec-
essary to examine possible coordination of systemic 
and intrarenal RAS during HF/HS intake.  

3  Renal PRR regulates nephron ion trans-
porters during HF-induced SSH

Renal PRR expression responded to changing Na+ and 
K+ balance [61–66], suggesting a potential role of renal 
PRR in regulation of electrolyte metabolism. Functional 
evidence demonstrated that renal PRR selectively regu-
lated Ang II- or prorenin-stimulated epithelial Na+ 
channel (ENaC) activity and expression [46, 67–69]. Addi-
tionally, we have recently reported that activation of 
renal PRR promoting K+ secretion during a high K+ 
load is via intrarenal renin-angiotensin-aldosterone 
system [65, 66]. Furthermore, HF intake caused Na+ reten-
tion [70]. We found that PRO20 treatment inhibited 
HF-induced increase of plasma Na+ and decrease of 
urinary Na+ excretion, associated with suppressed urinary 
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renin and Ang II levels, and renal NHE3 and NKCC2 
expression [27]. Therefore, these studies suggest that 
PRR-dependent activation of intrarenal RAS may con-
tribute to HF-induced Na+ retention.

Several studies have shown that fructose intake 
increased renal Na+ reabsorption [70] via NHE3 and 
NKCC2 [17, 26, 27, 71] and Na+-K+-ATPase [28, 29], as well as 
enhanced the sensitivity of PT Na+ reabsorption to Ang 
II [26, 72, 73], rendering increased salt sensitivity [17, 31]. In 
agreement with this notion, we reported that chronic 
HF intake significantly upregulated renal NHE3 and 
NKCC2 expression at both mRNA and protein levels 
as well as the in vivo NKCC2 activity and the later was 
assessed by examining the rapid diuresis and natriuretic 
responses to furosemide [27]. More importantly, the acti-
vation of NHE3 and NKCC2 by fructose was blocked 
by PRR antagonist PRO20 treatment, in parallel with  
the changes in the indices of intrarenal RAS and Na+ 
retention [27]. These results suggest that PRR-dependent 
activation of intrarenal RAS may contribute to HF- 
induced SSH via stimulating ion transporters NHE3 
and NKCC2. However, the detailed mechanism of how 
renal PRR activation mediates HF-induced SSH 
remains elusive. As discussed above, HF-promoted renal 
PRR expression has been found in a variety of renal 
structures including the PTs, the thick ascending limb 
(TAL), and the collecting duct (CD). Along this line, 
functional studies showed that multiple ion transporters 
including NHE3, NKCC2, thiazide-sensitive NaCl 
cotransporter, ENaCs, and Na+-K+-ATPase are under 
the regulation by PRR during HF feeding [28, 29]. Future 
studies are needed to determine the relative contribution 
of the PRR in a particular nephron site to HF-induced 
SSH and intrarenal RAS. 

4  Renal UA regulates PRR and intrarenal 
RAS during HF-induced SSH

UA, an inert metabolic end-product of purine metabo-
lism, has been recently incriminated in many chronic 
disease processes, such as hypertension, metabolic syn-
drome, obesity, non-alcoholic fatty liver disease, and 
kidney disease [74]. Recently, multiple studies showed 
that exogenous UA stimulated local RAS leading to 
oxidative stress in 3T3-L1 adipocytes [75], rat vascular 
smooth cell proliferation [76], human vascular endothelial 
cell dysfunction [77], and immortalized human mesangial 
cell proliferation [78], elevated serum UA increases BP 
and activates renal RAS [79, 80], suggesting a close link 

between UA and the RAS.
UA is a major metabolic end products of fructose 

metabolism and contributes to fructose-induced meta-
bolic syndrome [74]. Besides its hepatic expression, the 
rate limiting enzyme for fructose metabolism, KHK, is 
highly expressed in the PTs and TALs where KHK- 
dependent production of UA contributes to proinflam-
matory response [81, 82]. Although several literatures 
reported HF-caused hyperuricemia contributes to fructose- 
induced hypertension [83, 84], the source of increased UA 
remains elusive. Some animal studies [8, 27] and a clinical 
study [85] have shown that HF intake did not demon-
strate any elevation in serum UA, but exhibited enhanced 
urinary UA excretion. Furthermore, we found that allo-
purinol treatment attenuated HF-induced urinary UA 
excretion in parallel with suppressed SSH while plasma 
UA levels largely remained quite constant [27]. These 
results suggest an intriguing possibility that the UA of 
renal origin may be causally linked to the generation of 
SSH during HF intake. It is thus interesting to deter-
mine the mechanism of how HF affects local UA 
production in the kidney. To address this question, the 
use of nephron-specific deletion of KHK will be highly 
informative. Further studies in kidney-specific KHK 
knockout mice are needed to confirm the role of renal 
KHK-mediated UA production in HF-induced SSH.

Irrespective of the underlying mechanism, inhibition 
of UA production likely represents an effective antihy-
pertensive intervention. Indeed, allopurinol lowers BP 
in adolescence with prehypertension [86] and also in 
adults with established hypertension [87]. We have also 
reported that allopurinol treatment effectively attenuated 
HF-induced SSH associated with suppression of renal 
PRR and intrarenal RAS as well as renal expression of 
NHE3 and NKCC2 [27]. 

5  Imbalance between ROS and NO contrib-
utes to HF-induced SSH

The pathogenesis of fructose-induced SSH may occur 
as a result of increased oxidative stress. It has been 
reported that increased oxidative stress was observed in 
fructose-fed rats, as reflected by increased aortic NOX [88], 
increased ventricular [89] and vascular superoxide anion 
production [89, 90], elevated free radical hydrogen peroxide 
levels [88], and stimulated urinary 8-isoprostane excre-
tion [60]. Interestingly, in fructose-induced salt-sensitive 
animals, there is a further enhancement of oxidative 
stress [91], which may thereby lead to sympathoexci-
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tation, at least in part, responsible for the blunted 
suppression of plasma renin activity by HS intake and 
the development of SSH. Along with this line, renal 
denervation attenuates NOX activity and ROS levels in 
the kidney[92], and cryoablation of the renal nerves 
significantly decreased plasma renin activity and SSH 
in fructose-fed rats[93]. Moreover, a recent study by 
Dornas et al. [30] provides a link between oxidative 
stress and NF-κB pathway, which may contribute to 
HF-induced SSH and renal injury. 

UA acts as a pro-oxidant and once inside cells it 
stimulates production of ROS via NOX-dependent 
mitochondrial oxidant system [94], suggesting that 
UA-induced oxidative stress may be responsible for the 
BP elevation and the renal injury during HF intake. Of 
note, oxidative stress also leads to overstimulation of 
renal NHE3 by exaggerating Ang II signaling [95]. Over-
all, in fructose/salt models, renal UA-stimulated oxida-
tive stress may contribute to the activation of intrarenal 
RAS and hence the activation of ion transporters, 
resulting in increased Na+ reabsorption and retention.  

Reduced NO bioavailability represents a major 
pathophysiological factor contributing to hypertension 
due to diverse etiologies. Inhibition of NO synthesis or 
genetic deletion of endothelial NO synthase (eNOS)  
resulted in elevated BP [96]. Diminished NO production 
has been reported in several animal models of hyper-
tension [97, 98] as well as hypertensive individuals [99, 100]. 
The antihypertensive action of NO is attributed to 
vascular relaxation and inhibition of tubular ion trans-
port [101–103]. Both the vascular tissues from fructose-fed 
rats and HF-treated isolated rat mesenteric vascular 
beds exhibit impaired endothelium-dependent relax-
ation [18], leading to enhanced vascular tone and elevated 
BP. In addition, renal medullary eNOS expression [24] 
and urinary NO metabolites NO2/NO3 excretion as a 
biomarker for renal NO [31] were reduced by HF/HS 
intake, which may contribute to decreased Na+ excre-
tion and increased Na+ retention in HF/HS-fed rats . Of 
note, the cause and effect between the decreased NO 
excretion and the decreased Na+ excretion in HF/HS 
model is still unknown. 

6  Conclusion

It has been well established that fructose/salt intake 
induces hypertension likely via enhancement of renal 
Na+ reabsorption. We have recently reported that the 
underlying mechanism involves UA-dependent activation 

of PRR and intrarenal RAS, which leads to increased 
renal Na+ reabsorption via multiple renal ion transporters 
including NHE3, NKCC2, ENaCs, and Na+-K+- 
ATPase, ultimately resulting in elevated BP (Fig. 1). 
Targeting components of this pathway such as UA 
production, the activation of PRR or the intrarenal 
RAS, or ion transport may offer benefits for the patients 
with hypertension associated with HF and HS intake. 
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