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Mouse strain-specific responses of mitochondrial respiratory function 
and cardiac hypertrophy to isoproterenol treatment
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Abstract: Cardiac hypertrophy is a common pathological process of various cardiovascular diseases and eventually develops into 
heart failure. This paper was aimed to study the different pathological characteristics exhibited by different mouse strains after hyper-
trophy stimulation. Two mouse strains, A/J and FVB/nJ, were treated with isoproterenol (ISO) by osmotic pump to induce cardiac 
hypertrophy. Echocardiography was performed to monitor heart morphology and function. Mitochondria were isolated from hearts in 
each group, and oxidative phosphorylation function was assayed in vitro. The results showed that both strains showed a compensatory 
enhancement of heart contractile function after 1-week ISO treatment. The A/J mice, but not the FVB/nJ mice, developed significant 
cardiac hypertrophy after 3-week ISO treatment as evidenced by increases in left ventricular posterior wall thickness, heart weight/
body weight ratio, cross sectional area of cardiomyocytes and cardiac hypertrophic markers. Interestingly, the heart from A/J mice 
contained higher mitochondrial DNA copy number compared with that from FVB/nJ mice. Functionally, the mitochondria from A/J 
mice displayed faster O2 consumption at state III with either complex I substrates or complex II substrate, compared with those from 
FVB/nJ mice. ISO treatment did not affect mitochondrial respiratory control rate (RCR), but significantly suppressed the ADP/O ratio 
generated from the complex II substrate in both strains. The ADP/O ratio generated from the complex I substrates in A/J mice declined 
by 50% after ISO treatment, whereas FVB/nJ mice were not affected. These results suggest that, compared with FVB/nJ mice, A/J 
mice possesses a poor integrity of mitochondrial respiratory chain that might contribute to its vulnerability to ISO-induced cardiac 
hypertrophy.
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小鼠对异丙肾上腺素处理的品系特异性反应
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摘  要：心肌肥厚是各种心血管疾病共同的病理过程，最终发展为心力衰竭。本文旨在研究不同品系小鼠在肥大刺激后表现

出的不同病理学特征。通过动物微量注射泵泵入异丙肾上腺素(isoproterenol, ISO)诱导A/J和FVB/nJ小鼠心肌肥厚，用超声心

动图监测心脏形态和功能。从各组小鼠心脏中分离线粒体，检测其氧化磷酸化功能。结果显示，两种品系小鼠在1周ISO处

理后均表现出心脏收缩功能的代偿性增强。A/J小鼠(而非FVB/nJ小鼠)在3周ISO处理后出现明显的心肌肥厚，主要表现为左

室后壁厚度、心重/体重比、心肌细胞横截面积和心肌肥大标志物表达均显著增加。与FVB/nJ小鼠相比，A/J小鼠心脏含有更

高的线粒体DNA拷贝数；且无论是在复合物I底物还是复合物II底物中，A/J小鼠线粒体在state III时的耗氧速率都更高。ISO
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处理对两种品系小鼠心脏线粒体呼吸控制率没有显著影响，但显著抑制两种品系小鼠自复合物II底物产生的ADP/O比值。在

ISO处理后，A/J小鼠线粒体自复合物I底物产生的ADP/O比值下降了约50%，而FVB/nJ小鼠不受影响。以上结果提示，相对

于FVB/nJ小鼠，A/J小鼠线粒体呼吸链的完整性较差，这可能是其易受ISO诱导产生心肌肥厚的原因之一。
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Cardiac hypertrophy occurs in response to a chronic or 
recurrent pressure-overload stimulus, and it is mainly 
characterized by enlargement of individual cardiomyo-
cyte and accompanied by interstitial and perivascular 
fibrosis and cardiomyocyte death [1]. Mitochondrion is 
the major energy plant for cardiac output, and mito-
chondrial disorder contributes to the pathogenesis of 
cardiac hypertrophy [1]. However, it remains unclear 
how mitochondrial function affects the pathological 
progress of cardiac hypertrophy.

Mouse cardiac hypertrophy models provide extensive 
mechanistic insights into the pathogenesis of cardiac 
hypertrophy. There are several ways to establish patho-
logical cardiac hypertrophy in mice, mainly including 
pressure overload, volume overload and pharmaceuti-
cal treatment [2–4]. Isoproterenol (ISO), a beta-1 and 
beta-2 adrenergic receptor agonist, is a commonly used 
drug to induce cardiac hypertrophy [4]. ISO could acti-
vate adenylyl cyclase (AC), yield cyclic AMP (cAMP) 
and activate protein kinase A (PKA) through β-adrenergic 
receptor coupled with Gs protein (Gαs). It then results 
in increased intracellular calcium through phosphory-
lating L-type calcium channels. Increased intracellular 
calcium enhances cardiomyocyte contractility and 
accelerates heart rate by increasing the slope of phase 4 [1]. 
Chronically increased workload causes the heart to 
develop hypertrophy to compensate the ventricular 
stress and maintain normal contractile function.

Clinical manifestation in human heart diseases shows 
highly heterogeneous because of different genetic back-
ground [5]. Previous studies have evaluated structural 
and functional outcomes of the heart from 104 inbred 
mouse strains in response to chronic ISO infusion [6–8]. 
The findings suggest that genetic background has a 
high impact on the cardiac response to ISO treatment, 
and the heritability of the left ventricular mass was 
estimated to be between 61% and 81% [6–8]. By analyz-
ing the changes in gene expression of these mouse 
strains during cardiac hypertrophy and heart failure, 
Santolini et al. [9] found that genes related to the severity 
of the disease were not consistently expressed among 

different strains. These studies support that mice have 
phenotypic heterogeneity in ISO-induced cardiac 
hypertrophy due to strain-specific genetic background. 
However, the underlying mechanism for different 
mouse strains to adapt to hypertrophic stress has not 
been clarified yet.

Here we examined the responses of two mouse 
strains, A/J and FVB/nJ, to ISO-induced cardiac hyper-
trophy. The A/J inbred strain is highly susceptible to 
cortisone-induced congenital cleft palate and widely 
used in cancer and immunology research [10]. The FVB/nJ 
strain is inbred for the Fv1b allele which confers sensi-
tivity to the Friend leukemia virus B strain. Due to the 
prominent pronuclei in their fertilized eggs and the 
large litter size, FVB/nJ mice are commonly used for 
transgenic injection [11]. In the present study, we com-
pared the differences between A/J mice and FVB/nJ 
mice in response to ISO-induced cardiac hypertrophy, 
and explored the role of mitochondrial function in it.

1  MATERIALS AND METHODS

1.1  Animal care
All mice used in the present study were male mice aged 
10–12 weeks. All mice were housed in the Animal 
Experiment Center of Renmin Hospital of Wuhan Uni-
versity under specific-pathogen-free (SPF) conditions 
with controlled temperature, humidity, and light and 
free access to food and water. All animal experiments 
in this work were approved by the Animal Care and 
Use Committee of Renmin Hospital at Wuhan University 
and performed conforming to the 8th Edition of the 
Guide for the Care and Use of Laboratory Animals 
(Guide NRC, 2011) published by the US National 
Institutes of Health.
1.2  ISO administration
Cardiac hypertrophy was induced by subcutaneous 
osmotic minipump infusion of ISO (30 mg/kg per day) 
for 3 weeks. An osmotic minipump (Alzet, Cupertino, 
CA, USA) was implanted subcutaneously to deliver ISO 
in the interscapular region under pentobarbital (50 mg/kg, 
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i.p.) anesthesia [12]. In this experiment, mice treated in 
parallel with same amount of saline served as controls.
1.3  Echocardiography
Echocardiography was performed 3 days after the end 
of ISO. Mice were first anesthetized with 1.5%–2% 
inhaled isoflurane. Then, transthoracic echocardiography 
was conducted utilizing a VINNO6 ultrasound system 
(VINNO Technology Co., Suzhou, Jiangsu, China) as 
previously described [13]. M-mode echocardiograms 
were recorded by a skilled ultrasound technician at the 
mitral papillary muscle level under the left ventricular 
short axis views. According to the American Society of 
Echocardiography guidelines, relevant echocardio-
graphic parameters, including systolic interventricular 
septum (IVS;s), diastolic interventricular septum 
(IVS;d), systolic left ventricular posterior wall thick-
ness (LVPW;s), diastolic left ventricular posterior wall 
thickness (LVPW;d), left ventricular end systolic inner 
dimension (LVID;s), left ventricular end diastolic inner 
dimension (LVID;d), ejection fraction (EF) and frac-
tional shortening (FS) were measured or calculated in 
at least three consecutive heartbeats.
1.4  Tissue preparation
At the end of the experiment, mice were weighed and 
then sacrificed for harvesting hearts under the condition 
of pentobarbital (50 mg/kg, i.p.) anesthesia. The weight 
of hearts was measured after being rinsed in iced phos-
phate buffered saline (PBS) and dried with absorbent 
paper. Subsequently, the heart was divided into several 
pieces, one part of which was placed on ice for the 
following experiments, another part of which was fixed 
with 4% paraformaldehyde for the histopathological 
analysis, and the third part of which was stored at −80 °C 
after quick freezing with liquid nitrogen.
1.5  Hematoxylin-eosin (H&E) and wheat germ agglutinin 
(WGA) staining
The heart tissues were fixed in 4% paraformaldehyde at 
room temperature for 24 h and then embedded in paraffin. 
The heart tissues were cut into 5 μm sections, then 
stained with H&E and WGA respectively, and were 
imaged under an Olympus microscope. Image Pro Plus 
6.0 (Media Cybernetics Inc.) was used to analyze WGA 
staining to measure the cross sectional area of cardio-
myocytes. No less than 100 cardiomyocytes were taken 
from each group to calculate the cross sectional area of 
cardiomyocytes.
1.6  Quantitative real-time PCR (qRT-PCR)
According to the manufacturer’s instructions, TRIzol 

(Invitrogen, Waltham, MA, USA) was used to extract 
total RNA from frozen mouse heart tissues. Then, 
cDNA was synthesized using a cDNA synthesis kit 
(Roche, Mannheim, Germany). Then, SYBR Green 
PCR Master Mix (Roche, Mannheim, Germany) was 
used to perform qRT-PCR, and GAPDH was used to 
quantify the relative expression level of the target 
gene. The primer sequences used for amplification 
were as follows: Atrial natriuretic peptide (ANP): 
5’-TTTCAAGAACCTGCTAGACCACC-3’ (forward) 
and 5’-GATCTATCGGAGGGGTCCCA-3’ (reverse), 
product length: 207 bp; Brain natriuretic peptide 
(BNP): 5’-CGCTGGGAGGTCACTCCTAT-3’ (for-
ward) and 5’-CTTCAGTGCGTTACAGCCCAA-3’ 
(reverse), product length: 293 bp; Myosin heavy chain 
7 (Myh7): 5’-GGCCTGGGCTTACCTCTCTA-3’ (for-
ward) and 5’-ACAGTCACCGTCTTGCCATT-3’ 
(reverse), product length: 266 bp; GAPDH: 5’-TCCT-
GCACCACCAACTGCTTAG-3’ (forward) and 5’- 
GATGACCTTGCCCACAGCCTTG-3’ (reverse), 
product length: 213 bp. The primers were synthesized 
in Sangon Biotech (Shanghai) Co., Ltd.
1.7  Mitochondrial DNA content
qRT-PCR was utilized to determine mitochondrial 
DNA content as described previously [13]. First, total 
heart tissue DNA was extracted using the Animal 
Tissues/Cells Genomic DNA Extraction Kit (Beijing 
Solarbio Science & Technology Co., Ltd., Beijing, China) 
according to the manufacturer’s instructions. Mito-
chondrial gene (cytochrome b, mCytb, forward primer: 
5’-ATGGAGCGATGGTTGTCGG-3’, reverse primer: 
5’-CACCCTCACTCGGCTTCTTT-3’, product length: 
235 bp) and a reference nuclear gene (H19, forward 
primer: 5’-CAACATCCCACCCACCGTAA-3’, reverse 
primer: 5’-CAGTGCCTCATGGGAATGGT-3’, product 
length: 225 bp) were amplified separately with the 
Lightcycler 480 system (Roche, Mannheim, Germany) 
to quantify mitochondrial DNA relative level. The 
primers were synthesized in Sangon Biotech (Shanghai) 
Co., Ltd.
1.8  Mitochondria isolation
Mitochondria from the heart tissues were isolated 
utilizing a Mitochondrial Extraction Kit (Beijing Solar-
bio Science & Technology Co., Ltd., Beijing, China) 
following the manufacturer’s instructions. Briefly, the 
heart tissues were homogenized in Lysis Buffer and 
then subjected to centrifugation several times at different 
rotational speed. Finally, the mitochondria were resus-
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pended in the Store Buffer and placed on ice. All above 
steps were performed under conditions of ice or 4 °C. 
Mitochondrial protein was quantified using a BCA 
Protein Quantitative Kit (Applygen Technologies Inc., 
Beijing, China).
1.9  Mitochondrial respiratory function
Mitochondrial respiratory function was analyzed 
utilizing a Clark oxygen electrode (Rank Brothers Ltd., 
Cambridge, UK) under conditions of sealed chamber 
and 25 °C room temperature as described previously [14, 15]. 
Briefly, the above mitochondrial suspension was diluted 
by mitochondrial assay buffer (220 mmol/L mannitol, 
70 mmol/L sucrose, 10 mmol/L KH2PO4, 5 mmol/L 
MgCl2, 2 mmol/L HEPES, 1 mmol/L EGTA, 0.2% fatty 
acid-free bovine serum albumin, pH 7.4) to yield a protein 
concentration of 4  mg/mL. Then, the complex I substrates 
(5 mmol/L glutamate, 5 mmol/L malate and 5 mmol/L 
pyruvate) and the complex II substrate (5 mmol/L 
succinate) were used to measure mitochondrial state II 
respiration separately. Mitochondrial state III respiration 
was occurred after the injection of ADP (250 mmol/L). 
The mitochondrial respiratory control ratio (RCR) was 
calculated by state III respiratory rate/state II respiratory 
rate. Meanwhile, the mitochondrial ADP/O ratio was 
calculated by ADP added/oxygen consumption.
1.10  Statistical analyses
All data were presented as mean ± SEM. Students’ 
t-test and one-way ANOVA, analyzed by IBM SPSS 
statistics version 20 (Chicago, IL, USA), were used to 
determine the statistical significance between two 

groups and among three or more groups, respectively. 
Statistically significant difference was defined as P < 
0.05.

2  RESULTS

2.1  ISO induced cardiac hypertrophy in A/J mice 
but not in FVB/nJ mice
During ISO treatment, the body weight was monitored 
weekly. A/J mice showed a generally lower body 
weight than FVB/nJ mice at the same age (Fig. 1A). 
ISO treatment (30 mg/kg per day) did not significantly 
alter the body weight in both strains except for a 
slight decrease (no statistical significance) in A/J mice 
after the first week of ISO treatment (Fig. 1A). Com-
pared with control groups treated with saline, 3-week 
ISO treatment significantly increased the heart weight/
body weight (HW/BW) ratio in A/J mice, but not in 
FVB/nJ mice (Fig. 1B). Moreover, the HW/BW ratio in 
A/J mice was significantly higher than FVB/nJ mice 
after 3-week ISO treatment (Fig. 1B).

In both A/J and FVB/nJ mice, the heart responded to 
ISO treatment by a compensatory increase of EF and 
FS after the first week and then recovered to baseline 
(Fig. 2A–C), suggesting an equivalent stimulation on 
contractile function by ISO and an adaption of the heart 
to the stress as expected. Both EF and FS did not show 
a remarkable decline after three weeks of ISO treat-
ment (Fig. 2A–C), indicating that the heart did not 
progress into heart failure. However, LVPW;s and 

Fig. 1. A/J mice developed more severe cardiac hypertrophy than FVB/nJ mice in response to ISO treatment. A: Body weight over 3 
weeks in A/J mice and FVB/nJ mice treated with saline or ISO (30 mg/kg per day). B: Heart weight/body weight (HW/BW) ratio 
in A/J mice and FVB/nJ mice after 3-week treatment with saline or ISO. Mean ± SEM, n = 5. **P < 0.01, ***P < 0.001 vs A/J mice (In 
inset A, upper: FVB/nJ+saline mice vs A/J+saline mice; below: FVB/nJ+ISO mice vs A/J+ISO mice). ###P < 0.001 vs A/J+saline; *P < 
0.05 vs A/J+ISO (In inset B).



LI Shuang-Ling et al.: Mouse Strain-Specific Responses to Isoproterenol Treatment 463

Fig. 2. Echocardiogram of A/J mice and FVB/nJ mice in response to ISO treatment. A: Representative echocardiogram of A/J mice 
and FVB/nJ mice after ISO treatment for 3 weeks. B, C: EF (B) and FS (C) over 3 weeks in A/J mice and FVB/nJ mice treated with 
saline or ISO. D, E: LVPW;s (D) and LVPW;d (E) in A/J mice and FVB/nJ mice treated with saline or ISO for 3 weeks. Mean ± SEM, 
n = 5. **P < 0.01, FVB/nJ+ISO vs FVB/nJ+saline; #P < 0.05, ##P < 0.01, ###P < 0.001, A/J+ISO vs A/J+saline.
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LVPW; d significantly increased in A/J mice in 
response to ISO infusion for 3 weeks, but the changes 
were comparably mild in FVB/nJ mice (Fig. 2D and 
2E). The cross sectional area of cardiomyocytes (Fig. 
3A, B) and cardiac hypertrophic makers (Fig. 3C–E) 
showed a similar trend. These data suggest that FVB/nJ 

mice are more resistant to ISO-induced cardiac hyper-
trophy than A/J mice. 
2.2  The heart from A/J mice contains a higher mito-
chondrial DNA copy number than that from FVB/
nJ mice
Since mitochondrial energy metabolism plays a key 

Fig. 3. Histopathology and cardiac hypertrophic markers of A/J mice and FVB/nJ mice in response to ISO treatment. A: Representative 
H&E and WGA staining images of A/J mice and FVB/nJ mice after saline or ISO treatment for 3 weeks. Scale bar, 50 μm. B: Quanti-
tative statistical results of the cross sectional area of cardiomyocytes in A/J mice and FVB/nJ mice after treated with saline or ISO for 
3 weeks; C–E: ANP (C), BNP (D) and Myh7 (E) mRNA expression levels in A/J mice and FVB/nJ mice after treated with saline or 
ISO for 3 weeks. Mean ± SEM, n = 5. *P < 0.05 vs A/J+ISO; ##P < 0.01 vs A/J+saline.
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role in maintaining normal heart function, we then 
evaluated the status of isolated mitochondria from heart 
tissues of all four groups. To our surprise, the heart 
from A/J mice contained significantly higher mitochon-
drial DNA copy number than that from FVB/nJ mice, 
as evidenced by measuring mitochondrially encoded 
cytochrome b (mCytb) in contrast to nuclear H19 gene 
(Fig. 4A). However, the mitochondria yield in terms of 
protein content was comparable in both A/J and FVB/
nJ mice (Fig. 4B). Neither the mitochondrial DNA copy 
number nor the mitochondria protein content yield 
from the two strains was affected by ISO treatment 
(Fig. 4).
2.3  ISO differentially affects mitochondrial respira-
tory chain integrity in the hearts from A/J and FVB/
nJ mice 
Mitochondrial oxygen consumption was measured 
under conditions of complex I substrates (glutamate, 
malate and pyruvate) or complex II substrate (succi-
nate), respectively (Fig. 5A and 5B). No matter with or 
without ISO treatment, compared with the mitochon-
dria from A/J mice, the mitochondria from the FVB/nJ 
mice displayed slightly lower (no statistical signifi-
cance) oxygen consumption rates at state II under com-
plex I substrates and complex II substrate, except for 
that at state II under complex II substrate (statistical 
significance) with saline treatment (Fig. 5C–D). How-
ever, compared with the mitochondria from A/J mice, 
the mitochondria from the FVB/nJ mice displayed 
significantly lower oxygen consumption rates at state 

III under complex I substrates and complex II substrate, 
which were not affected by ISO treatment (Fig. 5E–F). 
The calculated RCR showed no difference among all 
groups with complex I substrates (Fig. 5G); however, 
the RCR with complex II substrate in FVB/nJ mice was 
significantly lower than A/J mice at baseline but not 
after ISO treatment (Fig. 5H). 

ADP/O ratio reflects the integrity and efficiency of 
the mitochondrial respiratory chain to generate ATP by 
utilizing oxygen. Interestingly, we observed a signifi-
cant decrease of ADP/O ratio through both complex I 
and II after ISO treatment in A/J mice (Fig. 6). However, 
the ADP/O ratio in FVB/nJ mice showed no difference 
with complex I substrates but a decrease with the com-
plex II substrate (Fig. 6). Compared with A/J mice, the 
post-ISO decrease of ADP/O ratio through complex I 
was largely preserved in FVB/nJ mice (Fig. 6A), 
reflecting a major difference in mitochondrial oxidative 
phosphorylation function between the two strains. 
These data suggest that the integrity of mitochondrial 
respiratory chain in A/J mice is more vulnerable to ISO 
treatment than that in FVB/nJ mice. 

3  DISCUSSION

Cardiac hypertrophy and subsequent heart failure are 
the core pathological process of multiple cardiovascular 
diseases [16]. However, the underlying mechanisms 
about the occurrence and development of cardiac 
hypertrophy remain to be elucidated. Currently, mouse 

Fig. 4. A/J mice showed higher mitochondrial DNA content than FVB/nJ mice with or without ISO treatment. A: Mitochondrial DNA 
copy number was determined by mCytb DNA levels normalized with nuclear H19 measured by qRT-PCR. B: Mitochondrial 
protein content presented as mitochondrial protein/heart tissue (mg/g) ratio after homogenization. Mean ± SEM, n = 5. *P < 0.05 
vs A/J+saline; **P < 0.01 vs A/J+ISO.
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Fig. 5. Mitochondrial respiratory function in A/J and FVB/nJ mouse hearts with or without ISO treatment. A, B: Representative 
record chart of mitochondrial respiratory chain oxidative phosphorylation function detection in A/J mice (A) and FVB/nJ mice (B). C, D: 
Oxygen consumption rate of mitochondrial state II respiration with the substrates for complex I (C; 5 mmol/L glutamate, 5 mmol/L malate 
and 5 mmol/L pyruvate) or complex II (D; 5 mmol/L succinate) among these 4 groups. E, F: Oxygen consumption rate of mitochon-
drial state III respiration with the substrates for complex I (E) or complex II (F) in different groups. G, H: The mitochondrial RCR 
with the substrates for complex I (G) or complex II (H) in different groups. Mean ± SEM, n = 5. *P < 0.05, **P < 0.01 vs corresponding  
A/J mice. Glu, glutamate; Mal: malate; Suc, succinate.
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is the most commonly used animal to establish cardiac 
hypertrophy model and to investigate the molecular 
mechanisms, but different mouse strains display highly 
heterogeneous outcomes [12, 17]. In the present work, we 
treated A/J mice and FVB/nJ mice with ISO to induce 
cardiac hypertrophy and observed that the mitochondrial 
respiratory chain integrity in the two strains differen-
tially responded to ISO treatment. Our findings support 
that strain-specific mitochondrial function accounts for 
different cardiac hypertrophy outcomes in mouse models. 

Commonly used mouse strains for heart diseases 
include A/J, FVB/nJ and C57L/B6 mice [18–20]. Here we 
found that the A/J strain was more sensitive to ISO- 
induced cardiac hypertrophy than FVB/nJ. This is con-
sistent with a previous report that A/J mice developed 
more severe cardiac hypertrophy than C57L/B6 mice 
under ISO treatment [21]. In addition, our results showed 
that FVB/nJ mice were resistant to ISO treatment, sug-
gesting that FVB/nJ is not an optimistic mouse strain 
for cardiac hypertrophy studies.

Mitochondrion is the power plant of cardiomyocytes, 
and occupies approximately 30% of cardiomyocyte 
volume and supplies >95% of the ATP consumed by 
the heart [22, 23]. Pathological cardiac hypertrophy is 
commonly accompanied by the impairment of energy 
metabolism, whereby mitochondrial dysfunction has 
been regarded as one of major risk factors in the 
pathology of cardiac hypertrophy. Although the number 
of mitochondria has been proposed to be increased in 
cardiac hypertrophy due to enhanced mitochondrial 

biogenesis and protein synthesis [24], we failed to 
observe any significant increase of mitochondrial DNA 
copy number or protein content after 3-week ISO treat-
ment in both A/J and FVB/nJ mice. In contrast, hyper-
trophied cardiomyocytes usually have reduced maximal 
mitochondrial oxidative phosphorylation capacity, 
which is partly attributable to activity defects of the 
respiratory chain complexes and the ATP synthase [25–28]. 
In the process of cardiac hypertrophy, the main cardio-
myocytes energy source switches from fatty acid oxi-
dation to a less efficient glucose oxidation, and this 
results in insufficient ATP supply [29, 30]. Peroxisome 
proliferator-activated receptor gamma coactivator 1- 
alpha (PGC-1α) regulates mitochondrial biogenesis and 
fatty acid oxidative capacity, and its expression 
decreases in the hypertrophied and failing heart [31, 32]. 
Adenine nucleotide translocator (ANT) is a carrier 
responsible for the transport of ATP from mitochondria 
to the cytosol, and reduction of ANT activity and alter-
ation of ANT isoform expression occur in human heart 
failure [33, 34]. These evidence implicates that the regula-
tions of mitochondria dynamics and respiratory func-
tion in cardiac hypertrophy are a complicated process. 

Although the hearts from A/J mice possessed more 
mitochondrial DNA copy number, they did not yield 
more mitochondrial mass, implicating a potential 
increase of mitochondria fission. It has been shown that 
increased mitochondria fission would lower the 
mitochondrial oxidative phosphorylation activity 
compared with mitochondria fusion [35]. Moreover, the 

Fig. 6. Mitochondrial ADP/O ratio in A/J and FVB/nJ mouse hearts with or without ISO treatment. A, B: The mitochondrial ADP/O 
ratio with the substrates for complex I (A) or complex II (B) among these 4 groups. Mean ± SEM, n = 5. ***P < 0.001 vs A/J+ISO; #P < 
0.05, ##P < 0.01 vs corresponding control (saline).
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mitochondria from A/J mouse hearts displayed faster 
oxygen consumption but lower ADP/O ratio, suggesting 
a defect in mitochondrial respiratory chain integrity. 
Consistently, Faulx et al. [21] found that A/J mice exhibited 
more severe cardiac hypertrophy than C57L/B6 mice 
under ISO administration because of poorer activity of 
mitochondrial enzymes regulating fatty acids and car-
bohydrate oxidation. Whether this is resultant from 
variations in mitochondria genome or nuclear-coded 
mito- chondrial genes needs further investigation.

Mitochondrial energy metabolism has a direct impact 
on cardiac hypertrophy. Lacking PGC-1α can accelerate 
transthoracic aortic constriction (TAC) induced cardiac 
dysfunction in mice, which is accompanied by a dra-
matic decline in cellular ATP content [36]. PGC-1α over-
expression can protect cardiomyocytes from hypertro-
phy, although moderate overexpression of PGC-1α is 
unable to improve cardiac function in response to 
chronic pressure overload [37, 38]. Mice with ANT1 
knockout develop enlarged hearts and mitochondrial 
proliferation [39]. Meanwhile, cardiac-specific ANT1 
overexpression protects against hypertension-induced 
cardiac hypertrophy in the rats owing to improvement 
in mitochondrial function [40]. Together with our find-
ings, these evidence suggests that the disorder of mito-
chondrial energy metabolism plays a crucial role in the 
pathogenesis of cardiac hypertrophy.

In conclusion, A/J mice develop more severe cardiac 
hypertrophy than FVB/NJ mice in response to ISO 
administration, which might be attributable to the mito-
chondria dysfunction caused by defected mitochondrial 
respiratory chain integrity. On the other hand, strategies 
to improve mitochondrial function may be the key to 
treat cardiac hypertrophy and heart failure. 
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